Fengzhe Zhou commited on
Commit
406a0ba
·
1 Parent(s): 76c0e18

update leaderboard

Browse files
app.py CHANGED
@@ -78,19 +78,7 @@ def create_model_link(model_name):
78
  # Predict Tab Configuration and Utilities
79
  # ============================================================================
80
 
81
- # Column name mapping (from original name to display name)
82
- PREDICT_COLUMN_NAME_MAPPING = {
83
- 'Common+Misc': 'Common Sense',
84
- 'BG Consistency': 'Background Consistency',
85
- 'Motion': 'Motion Smoothness',
86
- 'Aesthetic': 'Aesthetic Quality',
87
- 'I2V BG': 'I2V Background'
88
- }
89
-
90
- # Columns to remove from the dataframe
91
- PREDICT_COLUMNS_TO_REMOVE = ['Avg Score/Video', 'Common', 'Misc']
92
-
93
- # Desired column order (using renamed column names)
94
  PREDICT_COLUMN_ORDER = [
95
  'model',
96
  'Overall',
@@ -168,25 +156,28 @@ PREDICT_NEVER_HIDDEN_COLUMNS = ['model', 'Overall']
168
  # Columns displayed by default (using renamed column names)
169
  PREDICT_DEFAULT_DISPLAYED_COLUMNS = PREDICT_NEVER_HIDDEN_COLUMNS + PREDICT_ALL_SELECTED_COLUMNS
170
 
171
- def load_predict_csv(csv_path):
172
- """Load CSV and apply column ordering"""
173
- df = pd.read_csv(csv_path)
174
-
175
- # Remove specified columns
176
- df = df.drop(columns=PREDICT_COLUMNS_TO_REMOVE, errors='ignore')
177
 
178
- # Rename columns according to mapping
179
- df = df.rename(columns=PREDICT_COLUMN_NAME_MAPPING)
 
 
180
 
181
- # Reorder columns (only keep columns that exist in the dataframe)
182
- available_cols = [col for col in PREDICT_COLUMN_ORDER if col in df.columns]
183
- df = df[available_cols]
 
 
 
184
 
185
- # Convert model names to HuggingFace links
186
- if 'model' in df.columns:
187
- df['model'] = df['model'].apply(create_model_link)
188
 
189
  # Format numbers to ensure decimal places (1 decimal for numeric columns)
 
190
  for col in df.columns:
191
  if col not in ['model', 'params', 'activate_params'] and pd.api.types.is_numeric_dtype(df[col]):
192
  df[col] = df[col].apply(lambda x: f"{x:.1f}" if pd.notna(x) else x)
@@ -600,7 +591,7 @@ with demo:
600
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
601
  with gr.TabItem("🎨 Predict", elem_id="predict-tab", id=0):
602
  # Load data for Predict tab
603
- predict_df = load_predict_csv("data/predict-leaderboard.csv")
604
  predict_leaderboard = init_predict_leaderboard(predict_df)
605
 
606
  with gr.TabItem("🔄 Transfer", elem_id="transfer-tab", id=1):
 
78
  # Predict Tab Configuration and Utilities
79
  # ============================================================================
80
 
81
+ # Expected column order (the CSV should already have this order)
 
 
 
 
 
 
 
 
 
 
 
 
82
  PREDICT_COLUMN_ORDER = [
83
  'model',
84
  'Overall',
 
156
  # Columns displayed by default (using renamed column names)
157
  PREDICT_DEFAULT_DISPLAYED_COLUMNS = PREDICT_NEVER_HIDDEN_COLUMNS + PREDICT_ALL_SELECTED_COLUMNS
158
 
159
+ def load_predict_json(json_path):
160
+ """
161
+ Load predict leaderboard JSON.
 
 
 
162
 
163
+ The JSON should already be pre-processed by generate_predict_leaderboard.py
164
+ with correct column names, ordering, sorting, and separate model/url fields.
165
+ """
166
+ df = pd.read_json(json_path, orient='records')
167
 
168
+ # Convert model name + url to markdown link format for display
169
+ if 'model' in df.columns and 'url' in df.columns:
170
+ def create_link(row):
171
+ if pd.notna(row['url']):
172
+ return f"[{row['model']}]({row['url']})"
173
+ return row['model']
174
 
175
+ df['model'] = df.apply(create_link, axis=1)
176
+ # Remove the url column as it's now embedded in model
177
+ df = df.drop(columns=['url'])
178
 
179
  # Format numbers to ensure decimal places (1 decimal for numeric columns)
180
+ # Numbers should already be scaled to 0-100 by the generation script
181
  for col in df.columns:
182
  if col not in ['model', 'params', 'activate_params'] and pd.api.types.is_numeric_dtype(df[col]):
183
  df[col] = df[col].apply(lambda x: f"{x:.1f}" if pd.notna(x) else x)
 
591
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
592
  with gr.TabItem("🎨 Predict", elem_id="predict-tab", id=0):
593
  # Load data for Predict tab
594
+ predict_df = load_predict_json("data/predict-leaderboard.json")
595
  predict_leaderboard = init_predict_leaderboard(predict_df)
596
 
597
  with gr.TabItem("🔄 Transfer", elem_id="transfer-tab", id=1):
data/predict-leaderboard.csv DELETED
@@ -1,5 +0,0 @@
1
- model,params,activate_params,Overall,AV,Common,Human,Industry,Misc,Physics,Robot,Avg Score/Video,Common+Misc,Domain Score,Aesthetic,BG Consistency,Image Quality,Motion,Overall Consistency,Subject Consistency,I2V BG,I2V Subject,Quality Score
2
- nvidia/Cosmos-Predict2.5-2B,2.0,2.0,81.0,66.1,95.9,81.4,87.8,91.0,93.9,80.8,84.4,94.1,84.0,52.4,94.2,70.8,99.1,20.1,92.5,97.4,96.6,77.9
3
- Wan-AI/Wan2.2-I2V-A14B,14.0,14.0,80.6,66.3,94.6,82.1,89.2,90.9,91.8,81.7,84.5,93.2,84.1,51.2,93.7,69.6,98.3,20.4,91.6,96.6,96.0,77.2
4
- Wan-AI/Wan2.2-TI2V-5B,5.0,5.0,80.4,65.2,95.3,83.0,88.4,89.6,91.5,79.3,84.1,93.1,83.4,51.9,93.7,69.9,98.8,20.3,91.8,96.7,95.9,77.4
5
- Wan-AI/Wan2.1-I2V-14B-720P,14.0,14.0,79.7,66.9,93.7,80.1,89.7,85.5,88.7,80.1,82.9,90.6,82.7,51.5,93.1,70.1,98.1,20.4,90.0,96.0,95.2,76.8
 
 
 
 
 
 
data/predict-leaderboard.json ADDED
@@ -0,0 +1,301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "model":"Veo-3",
4
+ "url":"https:\/\/deepmind.google\/models\/veo",
5
+ "Overall":82.1,
6
+ "Domain Score":86.7,
7
+ "Quality Score":77.6,
8
+ "Common Sense":94.4,
9
+ "AV":68.7,
10
+ "Robot":86.9,
11
+ "Industry":89.7,
12
+ "Human":84.4,
13
+ "Physics":91.6,
14
+ "Subject Consistency":91.4,
15
+ "Background Consistency":93.1,
16
+ "Motion Smoothness":99.2,
17
+ "Aesthetic Quality":51.9,
18
+ "Image Quality":69.8,
19
+ "Overall Consistency":21.7,
20
+ "I2V Subject":97.0,
21
+ "I2V Background":96.9,
22
+ "params":null,
23
+ "activate_params":null
24
+ },
25
+ {
26
+ "model":"nvidia\/Cosmos-Predict2.5-2B",
27
+ "url":"https:\/\/huggingface.co\/nvidia\/Cosmos-Predict2.5-2B",
28
+ "Overall":81.0,
29
+ "Domain Score":84.0,
30
+ "Quality Score":77.9,
31
+ "Common Sense":94.1,
32
+ "AV":66.1,
33
+ "Robot":80.8,
34
+ "Industry":87.8,
35
+ "Human":81.4,
36
+ "Physics":93.9,
37
+ "Subject Consistency":92.5,
38
+ "Background Consistency":94.2,
39
+ "Motion Smoothness":99.1,
40
+ "Aesthetic Quality":52.4,
41
+ "Image Quality":70.8,
42
+ "Overall Consistency":20.1,
43
+ "I2V Subject":96.6,
44
+ "I2V Background":97.4,
45
+ "params":2.0,
46
+ "activate_params":2.0
47
+ },
48
+ {
49
+ "model":"Wan-AI\/Wan2.2-I2V-A14B",
50
+ "url":"https:\/\/huggingface.co\/Wan-AI\/Wan2.2-I2V-A14B",
51
+ "Overall":80.6,
52
+ "Domain Score":84.1,
53
+ "Quality Score":77.2,
54
+ "Common Sense":93.2,
55
+ "AV":66.3,
56
+ "Robot":81.7,
57
+ "Industry":89.2,
58
+ "Human":82.1,
59
+ "Physics":91.8,
60
+ "Subject Consistency":91.6,
61
+ "Background Consistency":93.7,
62
+ "Motion Smoothness":98.3,
63
+ "Aesthetic Quality":51.2,
64
+ "Image Quality":69.6,
65
+ "Overall Consistency":20.4,
66
+ "I2V Subject":96.0,
67
+ "I2V Background":96.6,
68
+ "params":14.0,
69
+ "activate_params":14.0
70
+ },
71
+ {
72
+ "model":"Wan-AI\/Wan2.2-TI2V-5B",
73
+ "url":"https:\/\/huggingface.co\/Wan-AI\/Wan2.2-TI2V-5B",
74
+ "Overall":80.4,
75
+ "Domain Score":83.4,
76
+ "Quality Score":77.4,
77
+ "Common Sense":93.1,
78
+ "AV":65.2,
79
+ "Robot":79.3,
80
+ "Industry":88.4,
81
+ "Human":83.0,
82
+ "Physics":91.5,
83
+ "Subject Consistency":91.8,
84
+ "Background Consistency":93.7,
85
+ "Motion Smoothness":98.8,
86
+ "Aesthetic Quality":51.9,
87
+ "Image Quality":69.9,
88
+ "Overall Consistency":20.3,
89
+ "I2V Subject":95.9,
90
+ "I2V Background":96.7,
91
+ "params":5.0,
92
+ "activate_params":5.0
93
+ },
94
+ {
95
+ "model":"Wan-AI\/Wan2.1-I2V-14B-720P",
96
+ "url":"https:\/\/huggingface.co\/Wan-AI\/Wan2.1-I2V-14B-720P",
97
+ "Overall":79.7,
98
+ "Domain Score":82.7,
99
+ "Quality Score":76.8,
100
+ "Common Sense":90.6,
101
+ "AV":66.9,
102
+ "Robot":80.1,
103
+ "Industry":89.7,
104
+ "Human":80.1,
105
+ "Physics":88.7,
106
+ "Subject Consistency":90.0,
107
+ "Background Consistency":93.1,
108
+ "Motion Smoothness":98.1,
109
+ "Aesthetic Quality":51.5,
110
+ "Image Quality":70.1,
111
+ "Overall Consistency":20.4,
112
+ "I2V Subject":95.2,
113
+ "I2V Background":96.0,
114
+ "params":14.0,
115
+ "activate_params":14.0
116
+ },
117
+ {
118
+ "model":"MAGI\/MAGI-1-24B",
119
+ "url":"https:\/\/huggingface.co\/sand-ai\/MAGI-1",
120
+ "Overall":78.5,
121
+ "Domain Score":80.5,
122
+ "Quality Score":76.5,
123
+ "Common Sense":90.6,
124
+ "AV":61.8,
125
+ "Robot":73.5,
126
+ "Industry":84.1,
127
+ "Human":79.8,
128
+ "Physics":87.7,
129
+ "Subject Consistency":90.0,
130
+ "Background Consistency":92.4,
131
+ "Motion Smoothness":99.0,
132
+ "Aesthetic Quality":50.2,
133
+ "Image Quality":64.2,
134
+ "Overall Consistency":21.4,
135
+ "I2V Subject":96.8,
136
+ "I2V Background":97.9,
137
+ "params":24.0,
138
+ "activate_params":24.0
139
+ },
140
+ {
141
+ "model":"THUDM\/CogVideoX1.5-5B-I2V",
142
+ "url":"https:\/\/huggingface.co\/THUDM\/CogVideoX1.5-5B-I2V",
143
+ "Overall":78.3,
144
+ "Domain Score":80.1,
145
+ "Quality Score":76.6,
146
+ "Common Sense":89.1,
147
+ "AV":59.7,
148
+ "Robot":73.0,
149
+ "Industry":84.4,
150
+ "Human":79.2,
151
+ "Physics":91.8,
152
+ "Subject Consistency":91.6,
153
+ "Background Consistency":93.9,
154
+ "Motion Smoothness":98.5,
155
+ "Aesthetic Quality":50.0,
156
+ "Image Quality":66.5,
157
+ "Overall Consistency":21.2,
158
+ "I2V Subject":95.0,
159
+ "I2V Background":96.1,
160
+ "params":5.0,
161
+ "activate_params":5.0
162
+ },
163
+ {
164
+ "model":"THUDM\/CogVideoX-5B-I2V",
165
+ "url":"https:\/\/huggingface.co\/THUDM\/CogVideoX-5B-I2V",
166
+ "Overall":77.9,
167
+ "Domain Score":79.5,
168
+ "Quality Score":76.3,
169
+ "Common Sense":87.7,
170
+ "AV":58.0,
171
+ "Robot":74.0,
172
+ "Industry":84.4,
173
+ "Human":79.0,
174
+ "Physics":90.2,
175
+ "Subject Consistency":91.4,
176
+ "Background Consistency":93.4,
177
+ "Motion Smoothness":98.0,
178
+ "Aesthetic Quality":51.2,
179
+ "Image Quality":64.6,
180
+ "Overall Consistency":21.3,
181
+ "I2V Subject":94.1,
182
+ "I2V Background":95.9,
183
+ "params":5.0,
184
+ "activate_params":5.0
185
+ },
186
+ {
187
+ "model":"Lightricks\/LTX-Video-13B",
188
+ "url":"https:\/\/huggingface.co\/Lightricks\/LTX-Video",
189
+ "Overall":77.9,
190
+ "Domain Score":78.4,
191
+ "Quality Score":77.4,
192
+ "Common Sense":88.9,
193
+ "AV":55.3,
194
+ "Robot":70.1,
195
+ "Industry":82.7,
196
+ "Human":78.3,
197
+ "Physics":90.1,
198
+ "Subject Consistency":90.6,
199
+ "Background Consistency":93.5,
200
+ "Motion Smoothness":99.0,
201
+ "Aesthetic Quality":53.5,
202
+ "Image Quality":69.5,
203
+ "Overall Consistency":21.4,
204
+ "I2V Subject":95.7,
205
+ "I2V Background":96.0,
206
+ "params":13.0,
207
+ "activate_params":13.0
208
+ },
209
+ {
210
+ "model":"Tencent\/HunyuanVideo-I2V",
211
+ "url":"https:\/\/huggingface.co\/Tencent\/HunyuanVideo-I2V",
212
+ "Overall":77.4,
213
+ "Domain Score":76.8,
214
+ "Quality Score":78.0,
215
+ "Common Sense":87.4,
216
+ "AV":56.3,
217
+ "Robot":67.7,
218
+ "Industry":83.0,
219
+ "Human":75.5,
220
+ "Physics":88.2,
221
+ "Subject Consistency":94.3,
222
+ "Background Consistency":95.3,
223
+ "Motion Smoothness":99.5,
224
+ "Aesthetic Quality":52.1,
225
+ "Image Quality":65.2,
226
+ "Overall Consistency":21.5,
227
+ "I2V Subject":98.6,
228
+ "I2V Background":97.6,
229
+ "params":null,
230
+ "activate_params":null
231
+ },
232
+ {
233
+ "model":"MAGI\/MAGI-1-4.5B",
234
+ "url":"https:\/\/huggingface.co\/sand-ai\/MAGI-1",
235
+ "Overall":76.9,
236
+ "Domain Score":77.4,
237
+ "Quality Score":76.3,
238
+ "Common Sense":87.5,
239
+ "AV":56.3,
240
+ "Robot":71.6,
241
+ "Industry":79.8,
242
+ "Human":76.0,
243
+ "Physics":88.9,
244
+ "Subject Consistency":92.1,
245
+ "Background Consistency":93.3,
246
+ "Motion Smoothness":99.0,
247
+ "Aesthetic Quality":50.4,
248
+ "Image Quality":61.8,
249
+ "Overall Consistency":21.6,
250
+ "I2V Subject":94.5,
251
+ "I2V Background":98.1,
252
+ "params":4.5,
253
+ "activate_params":4.5
254
+ },
255
+ {
256
+ "model":"Lightricks\/LTX-Video-2B",
257
+ "url":"https:\/\/huggingface.co\/Lightricks\/LTX-Video",
258
+ "Overall":76.9,
259
+ "Domain Score":76.6,
260
+ "Quality Score":77.1,
261
+ "Common Sense":87.3,
262
+ "AV":53.6,
263
+ "Robot":67.1,
264
+ "Industry":81.5,
265
+ "Human":77.1,
266
+ "Physics":87.6,
267
+ "Subject Consistency":89.2,
268
+ "Background Consistency":92.7,
269
+ "Motion Smoothness":98.7,
270
+ "Aesthetic Quality":53.2,
271
+ "Image Quality":71.3,
272
+ "Overall Consistency":21.1,
273
+ "I2V Subject":95.0,
274
+ "I2V Background":95.9,
275
+ "params":2.0,
276
+ "activate_params":2.0
277
+ },
278
+ {
279
+ "model":"Doubiiu\/DynamiCrafter_1024",
280
+ "url":"https:\/\/huggingface.co\/Doubiiu\/DynamiCrafter_1024",
281
+ "Overall":69.7,
282
+ "Domain Score":65.6,
283
+ "Quality Score":73.7,
284
+ "Common Sense":75.2,
285
+ "AV":43.4,
286
+ "Robot":55.0,
287
+ "Industry":72.5,
288
+ "Human":64.1,
289
+ "Physics":83.8,
290
+ "Subject Consistency":91.1,
291
+ "Background Consistency":92.5,
292
+ "Motion Smoothness":94.9,
293
+ "Aesthetic Quality":51.5,
294
+ "Image Quality":68.0,
295
+ "Overall Consistency":21.2,
296
+ "I2V Subject":84.5,
297
+ "I2V Background":86.2,
298
+ "params":null,
299
+ "activate_params":null
300
+ }
301
+ ]
data/reason-leaderboard.csv CHANGED
@@ -1,10 +1,15 @@
1
- model,params,activate_params,Overall,AV,Agibot,BridgeData V2,Common Sense,Embodied Reasoning,HoloAssist,Physics,RoboFail,RoboVQA,Space,Time
2
- Qwen/Qwen3-VL-30B-A3B-Instruct,30.0,3.0,60.6,49.0,43.0,36.0,59.9,61.3,81.0,59.7,67.0,89.1,52.5,62.1
3
- Qwen/Qwen2.5-VL-72B-Instruct,72.0,72.0,56.8,39.0,35.0,35.0,57.9,55.7,58.0,52.2,73.0,90.9,56.2,62.8
4
- nvidia/Cosmos-Reason1-7B,7.0,7.0,54.3,47.0,42.0,41.0,50.7,57.9,57.0,44.2,65.0,91.8,57.5,53.7
5
- Qwen/Qwen2.5-VL-32B-Instruct,32.0,32.0,51.9,33.0,34.0,32.0,53.8,50.0,55.0,45.6,52.0,90.0,50.0,61.1
6
- Qwen/Qwen2.5-VL-7B-Instruct,7.0,7.0,50.3,45.0,44.0,33.0,47.7,53.0,47.0,37.6,62.0,83.6,47.5,55.4
7
- Qwen/Qwen2.5-VL-3B-Instruct,3.0,3.0,48.1,29.0,36.0,31.0,47.4,48.9,48.0,42.9,63.0,82.7,47.5,50.7
8
- Qwen/Qwen2-VL-2B-Instruct,2.0,2.0,40.0,51.0,24.0,25.0,44.5,35.4,28.0,41.2,34.0,49.1,32.5,50.3
9
- Qwen/Qwen2-VL-72B-Instruct,72.0,72.0,40.0,25.0,31.0,28.0,45.0,34.9,21.0,40.3,49.0,53.6,50.0,47.3
10
- Qwen/Qwen2-VL-7B-Instruct,7.0,7.0,38.8,24.0,28.0,28.0,44.5,33.1,26.0,44.7,38.0,52.7,38.8,46.0
 
 
 
 
 
 
1
+ model,Overall,Common Sense,Embodied Reasoning,Space,Time,Physics,BridgeData V2,RoboVQA,RoboFail,Agibot,HoloAssist,AV,params,activate_params
2
+ GPT-5,70.0,72.7,67.4,67.5,72.8,74.3,53.0,90.9,68.0,55.0,73.0,62.0,,
3
+ Qwen/Qwen3-VL-235B-A22B-Instruct,64.8,65.2,64.4,56.2,69.8,62.4,42.0,93.6,71.0,45.0,76.0,56.0,235.0,22.0
4
+ Qwen/Qwen3-VL-30B-A3B-Instruct,60.6,59.9,61.3,52.5,62.1,59.7,36.0,89.1,67.0,43.0,81.0,49.0,30.0,3.0
5
+ Qwen/Qwen2.5-VL-72B-Instruct,56.8,57.9,55.7,56.2,62.8,52.2,35.0,90.9,73.0,35.0,58.0,39.0,72.0,72.0
6
+ OpenGVLab/InternVL3_5-38B,55.8,55.8,55.7,57.5,60.4,49.1,36.0,81.8,67.0,44.0,71.0,32.0,38.0,38.0
7
+ nvidia/Cosmos-Reason1-7B,54.3,50.7,57.9,57.5,53.7,44.2,41.0,91.8,65.0,42.0,57.0,47.0,7.0,7.0
8
+ GPT-4o,53.7,56.3,51.1,55.0,55.0,58.4,40.0,56.4,65.0,37.0,65.0,43.0,,
9
+ Qwen/Qwen2.5-VL-32B-Instruct,51.9,53.8,50.0,50.0,61.1,45.6,32.0,90.0,52.0,34.0,55.0,33.0,32.0,32.0
10
+ OpenGVLab/InternVL3_5-8B,50.5,50.5,50.5,48.8,54.7,45.6,32.0,77.3,66.0,38.0,49.0,38.0,8.0,8.0
11
+ Qwen/Qwen2.5-VL-7B-Instruct,50.3,47.7,53.0,47.5,55.4,37.6,33.0,83.6,62.0,44.0,47.0,45.0,7.0,7.0
12
+ OpenGVLab/InternVL3_5-14B,49.7,50.3,49.0,52.5,52.0,47.3,26.0,80.0,67.0,28.0,54.0,36.0,14.0,14.0
13
+ OpenGVLab/InternVL3_5-30B-A3B,49.5,49.5,49.5,47.5,54.4,43.8,37.0,78.2,60.0,27.0,55.0,37.0,30.0,3.0
14
+ Qwen/Qwen2.5-VL-3B-Instruct,48.1,47.4,48.9,47.5,50.7,42.9,31.0,82.7,63.0,36.0,48.0,29.0,3.0,3.0
15
+ zai-org/GLM-4.5V,45.5,46.0,44.9,46.2,50.7,39.8,26.0,83.6,69.0,25.0,24.0,38.0,,