Spaces:
Runtime error
Runtime error
Fengzhe Zhou
commited on
Commit
·
76c0e18
0
Parent(s):
initial commit
Browse files- .gitignore +2 -0
- README.md +77 -0
- app.py +617 -0
- data/predict-leaderboard.csv +5 -0
- data/reason-leaderboard.csv +10 -0
- requirements.txt +2 -0
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
scripts/
|
| 2 |
+
__pycache__/
|
README.md
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Physical AI Bench Leaderboard
|
| 3 |
+
emoji: 🤖
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: gradio
|
| 7 |
+
app_file: app.py
|
| 8 |
+
pinned: true
|
| 9 |
+
license: mit
|
| 10 |
+
short_description: Benchmark for Physical AI generation and understanding
|
| 11 |
+
sdk_version: 5.43.1
|
| 12 |
+
tags:
|
| 13 |
+
- leaderboard
|
| 14 |
+
- physical-ai
|
| 15 |
+
- world-models
|
| 16 |
+
- autonomous-driving
|
| 17 |
+
- robotics
|
| 18 |
+
- embodied-ai
|
| 19 |
+
---
|
| 20 |
+
|
| 21 |
+
# Physical AI Bench Leaderboard
|
| 22 |
+
|
| 23 |
+
**Physical AI Bench (PAI-Bench)** is a comprehensive benchmark suite for evaluating physical AI generation and understanding across diverse scenarios including autonomous vehicles, robotics, industrial spaces, and everyday ego-centric environments.
|
| 24 |
+
|
| 25 |
+
## Resources
|
| 26 |
+
|
| 27 |
+
- 🌐 [GitHub Repository](https://github.com/SHI-Labs/physical-ai-bench)
|
| 28 |
+
- 📊 [Predict Dataset](https://huggingface.co/datasets/shi-labs/physical-ai-bench-predict)
|
| 29 |
+
- 📊 [Transfer Dataset](https://huggingface.co/datasets/shi-labs/physical-ai-bench-transfer)
|
| 30 |
+
- 📊 [Reason Dataset](https://huggingface.co/datasets/shi-labs/physical-ai-bench-reason)
|
| 31 |
+
|
| 32 |
+
## Citation
|
| 33 |
+
|
| 34 |
+
```bibtex
|
| 35 |
+
@misc{PAIBench2025,
|
| 36 |
+
title={Physical AI Bench: A Comprehensive Benchmark for Physical AI Generation and Understanding},
|
| 37 |
+
author={Fengzhe Zhou and Jiannan Huang and Jialuo Li and Humphrey Shi},
|
| 38 |
+
year={2025},
|
| 39 |
+
url={https://github.com/SHI-Labs/physical-ai-bench}
|
| 40 |
+
}
|
| 41 |
+
```
|
| 42 |
+
|
| 43 |
+
---
|
| 44 |
+
|
| 45 |
+
# Configuration
|
| 46 |
+
|
| 47 |
+
Most of the variables to change for a default leaderboard are in `src/env.py` (replace the path for your leaderboard) and `src/about.py` (for tasks).
|
| 48 |
+
|
| 49 |
+
Results files should have the following format and be stored as json files:
|
| 50 |
+
```json
|
| 51 |
+
{
|
| 52 |
+
"config": {
|
| 53 |
+
"model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
|
| 54 |
+
"model_name": "path of the model on the hub: org/model",
|
| 55 |
+
"model_sha": "revision on the hub",
|
| 56 |
+
},
|
| 57 |
+
"results": {
|
| 58 |
+
"task_name": {
|
| 59 |
+
"metric_name": score,
|
| 60 |
+
},
|
| 61 |
+
"task_name2": {
|
| 62 |
+
"metric_name": score,
|
| 63 |
+
}
|
| 64 |
+
}
|
| 65 |
+
}
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
Request files are created automatically by this tool.
|
| 69 |
+
|
| 70 |
+
If you encounter problem on the space, don't hesitate to restart it to remove the create eval-queue, eval-queue-bk, eval-results and eval-results-bk created folder.
|
| 71 |
+
|
| 72 |
+
# Code logic for more complex edits
|
| 73 |
+
|
| 74 |
+
You'll find
|
| 75 |
+
- the main table' columns names and properties in `src/display/utils.py`
|
| 76 |
+
- the logic to read all results and request files, then convert them in dataframe lines, in `src/leaderboard/read_evals.py`, and `src/populate.py`
|
| 77 |
+
- the logic to allow or filter submissions in `src/submission/submit.py` and `src/submission/check_validity.py`
|
app.py
ADDED
|
@@ -0,0 +1,617 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
# Your leaderboard name
|
| 6 |
+
TITLE = """<h1 align="center" id="space-title">Physical AI Bench Leaderboard</h1>"""
|
| 7 |
+
|
| 8 |
+
# What does your leaderboard evaluate?
|
| 9 |
+
INTRODUCTION_TEXT = """
|
| 10 |
+
**Physical AI Bench (PAI-Bench)** is a comprehensive benchmark suite for evaluating physical AI generation and understanding across diverse scenarios including autonomous vehicles, robotics, industrial spaces, and everyday ego-centric environments.
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
# Which evaluations are you running? how can people reproduce what you have?
|
| 14 |
+
LLM_BENCHMARKS_TEXT = """
|
| 15 |
+
## How it works
|
| 16 |
+
|
| 17 |
+
This leaderboard tracks model performance across three core dimensions:
|
| 18 |
+
|
| 19 |
+
- **🎨 Predict**: Evaluates world foundation models' ability to predict future states across 1,044 diverse physical scenarios
|
| 20 |
+
- **🔄 Transfer**: Focuses on world model generation with complex control signals, featuring 600 videos across robotic arm operations, autonomous driving, and ego-centric scenes
|
| 21 |
+
- **🧠 Reason**: Evaluates understanding and reasoning about physical scenes, with 1,214 embodied reasoning scenarios focused on autonomous vehicle actions
|
| 22 |
+
|
| 23 |
+
PAI-Bench covers multiple physical AI domains including autonomous driving, robotics, industrial spaces, physics simulations, human interactions, and common sense reasoning.
|
| 24 |
+
|
| 25 |
+
### Resources
|
| 26 |
+
- 🌐 [GitHub Repository](https://github.com/SHI-Labs/physical-ai-bench)
|
| 27 |
+
- 📊 [Predict Dataset](https://huggingface.co/datasets/shi-labs/physical-ai-bench-predict)
|
| 28 |
+
- 📊 [Transfer Dataset](https://huggingface.co/datasets/shi-labs/physical-ai-bench-transfer)
|
| 29 |
+
- 📊 [Reason Dataset](https://huggingface.co/datasets/shi-labs/physical-ai-bench-reason)
|
| 30 |
+
|
| 31 |
+
## Reproducibility
|
| 32 |
+
|
| 33 |
+
To evaluate your models on PAI-Bench, visit our [GitHub repository](https://github.com/SHI-Labs/physical-ai-bench) for evaluation scripts and detailed instructions.
|
| 34 |
+
|
| 35 |
+
## Citation
|
| 36 |
+
|
| 37 |
+
If you use Physical AI Bench in your research, please cite:
|
| 38 |
+
|
| 39 |
+
```bibtex
|
| 40 |
+
@misc{{PAIBench2025,
|
| 41 |
+
title={{Physical AI Bench: A Comprehensive Benchmark for Physical AI Generation and Understanding}},
|
| 42 |
+
author={{Fengzhe Zhou and Jiannan Huang and Jialuo Li and Humphrey Shi}},
|
| 43 |
+
year={{2025}},
|
| 44 |
+
url={{https://github.com/SHI-Labs/physical-ai-bench}}
|
| 45 |
+
}}
|
| 46 |
+
```
|
| 47 |
+
"""
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
# ============================================================================
|
| 51 |
+
# Model Links Utility
|
| 52 |
+
# ============================================================================
|
| 53 |
+
|
| 54 |
+
def create_model_link(model_name):
|
| 55 |
+
"""
|
| 56 |
+
Convert a model name to a markdown link to Hugging Face.
|
| 57 |
+
|
| 58 |
+
Args:
|
| 59 |
+
model_name: Model name in format "org/model-name" or just a plain name
|
| 60 |
+
|
| 61 |
+
Returns:
|
| 62 |
+
Markdown formatted link or original name if format doesn't match
|
| 63 |
+
"""
|
| 64 |
+
if not isinstance(model_name, str):
|
| 65 |
+
return model_name
|
| 66 |
+
|
| 67 |
+
# Check if the model name follows the "org/model" format
|
| 68 |
+
if '/' in model_name:
|
| 69 |
+
# This is likely a HuggingFace model ID
|
| 70 |
+
hf_url = f"https://huggingface.co/{model_name}"
|
| 71 |
+
return f"[{model_name}]({hf_url})"
|
| 72 |
+
|
| 73 |
+
# If it doesn't have a slash, return as-is
|
| 74 |
+
return model_name
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# ============================================================================
|
| 78 |
+
# Predict Tab Configuration and Utilities
|
| 79 |
+
# ============================================================================
|
| 80 |
+
|
| 81 |
+
# Column name mapping (from original name to display name)
|
| 82 |
+
PREDICT_COLUMN_NAME_MAPPING = {
|
| 83 |
+
'Common+Misc': 'Common Sense',
|
| 84 |
+
'BG Consistency': 'Background Consistency',
|
| 85 |
+
'Motion': 'Motion Smoothness',
|
| 86 |
+
'Aesthetic': 'Aesthetic Quality',
|
| 87 |
+
'I2V BG': 'I2V Background'
|
| 88 |
+
}
|
| 89 |
+
|
| 90 |
+
# Columns to remove from the dataframe
|
| 91 |
+
PREDICT_COLUMNS_TO_REMOVE = ['Avg Score/Video', 'Common', 'Misc']
|
| 92 |
+
|
| 93 |
+
# Desired column order (using renamed column names)
|
| 94 |
+
PREDICT_COLUMN_ORDER = [
|
| 95 |
+
'model',
|
| 96 |
+
'Overall',
|
| 97 |
+
'Domain Score',
|
| 98 |
+
'Quality Score',
|
| 99 |
+
'Common Sense',
|
| 100 |
+
'AV',
|
| 101 |
+
'Robot',
|
| 102 |
+
'Industry',
|
| 103 |
+
'Human',
|
| 104 |
+
'Physics',
|
| 105 |
+
'Subject Consistency',
|
| 106 |
+
'Background Consistency',
|
| 107 |
+
'Motion Smoothness',
|
| 108 |
+
'Aesthetic Quality',
|
| 109 |
+
'Image Quality',
|
| 110 |
+
'Overall Consistency',
|
| 111 |
+
'I2V Subject',
|
| 112 |
+
'I2V Background',
|
| 113 |
+
'params',
|
| 114 |
+
'activate_params'
|
| 115 |
+
]
|
| 116 |
+
|
| 117 |
+
# Columns to hide by default (but still available for filtering/selection)
|
| 118 |
+
PREDICT_HIDDEN_COLUMNS = ['params', 'activate_params']
|
| 119 |
+
|
| 120 |
+
# Semantic/Domain dimensions (for selection button)
|
| 121 |
+
PREDICT_DOMAIN_SCORE_DIMENSIONS = [
|
| 122 |
+
'Domain Score',
|
| 123 |
+
'Common Sense',
|
| 124 |
+
'AV',
|
| 125 |
+
'Robot',
|
| 126 |
+
'Industry',
|
| 127 |
+
'Human',
|
| 128 |
+
'Physics',
|
| 129 |
+
]
|
| 130 |
+
|
| 131 |
+
# Quality dimensions (for selection button)
|
| 132 |
+
PREDICT_QUALITY_SCORE_DIMENSIONS = [
|
| 133 |
+
'Quality Score',
|
| 134 |
+
'Subject Consistency',
|
| 135 |
+
'Background Consistency',
|
| 136 |
+
'Motion Smoothness',
|
| 137 |
+
'Aesthetic Quality',
|
| 138 |
+
'Image Quality',
|
| 139 |
+
'Overall Consistency',
|
| 140 |
+
'I2V Subject',
|
| 141 |
+
'I2V Background'
|
| 142 |
+
]
|
| 143 |
+
|
| 144 |
+
PREDICT_DESELECTED_COLUMNS = ['Domain Score', 'Quality Score']
|
| 145 |
+
|
| 146 |
+
PREDICT_ALL_SELECTED_COLUMNS = [
|
| 147 |
+
'Domain Score',
|
| 148 |
+
'Quality Score',
|
| 149 |
+
'Common Sense',
|
| 150 |
+
'AV',
|
| 151 |
+
'Robot',
|
| 152 |
+
'Industry',
|
| 153 |
+
'Human',
|
| 154 |
+
'Physics',
|
| 155 |
+
'Subject Consistency',
|
| 156 |
+
'Background Consistency',
|
| 157 |
+
'Motion Smoothness',
|
| 158 |
+
'Aesthetic Quality',
|
| 159 |
+
'Image Quality',
|
| 160 |
+
'Overall Consistency',
|
| 161 |
+
'I2V Subject',
|
| 162 |
+
'I2V Background'
|
| 163 |
+
]
|
| 164 |
+
|
| 165 |
+
# Columns that can never be deselected
|
| 166 |
+
PREDICT_NEVER_HIDDEN_COLUMNS = ['model', 'Overall']
|
| 167 |
+
|
| 168 |
+
# Columns displayed by default (using renamed column names)
|
| 169 |
+
PREDICT_DEFAULT_DISPLAYED_COLUMNS = PREDICT_NEVER_HIDDEN_COLUMNS + PREDICT_ALL_SELECTED_COLUMNS
|
| 170 |
+
|
| 171 |
+
def load_predict_csv(csv_path):
|
| 172 |
+
"""Load CSV and apply column ordering"""
|
| 173 |
+
df = pd.read_csv(csv_path)
|
| 174 |
+
|
| 175 |
+
# Remove specified columns
|
| 176 |
+
df = df.drop(columns=PREDICT_COLUMNS_TO_REMOVE, errors='ignore')
|
| 177 |
+
|
| 178 |
+
# Rename columns according to mapping
|
| 179 |
+
df = df.rename(columns=PREDICT_COLUMN_NAME_MAPPING)
|
| 180 |
+
|
| 181 |
+
# Reorder columns (only keep columns that exist in the dataframe)
|
| 182 |
+
available_cols = [col for col in PREDICT_COLUMN_ORDER if col in df.columns]
|
| 183 |
+
df = df[available_cols]
|
| 184 |
+
|
| 185 |
+
# Convert model names to HuggingFace links
|
| 186 |
+
if 'model' in df.columns:
|
| 187 |
+
df['model'] = df['model'].apply(create_model_link)
|
| 188 |
+
|
| 189 |
+
# Format numbers to ensure decimal places (1 decimal for numeric columns)
|
| 190 |
+
for col in df.columns:
|
| 191 |
+
if col not in ['model', 'params', 'activate_params'] and pd.api.types.is_numeric_dtype(df[col]):
|
| 192 |
+
df[col] = df[col].apply(lambda x: f"{x:.1f}" if pd.notna(x) else x)
|
| 193 |
+
|
| 194 |
+
return df
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def select_predict_domain_score():
|
| 198 |
+
"""Return domain score for checkbox selection"""
|
| 199 |
+
return gr.update(value=PREDICT_DOMAIN_SCORE_DIMENSIONS)
|
| 200 |
+
|
| 201 |
+
def select_predict_quality_score():
|
| 202 |
+
"""Return quality score for checkbox selection"""
|
| 203 |
+
return gr.update(value=PREDICT_QUALITY_SCORE_DIMENSIONS)
|
| 204 |
+
|
| 205 |
+
def deselect_predict_all():
|
| 206 |
+
"""Deselect all dimensions"""
|
| 207 |
+
return gr.update(value=PREDICT_DESELECTED_COLUMNS)
|
| 208 |
+
|
| 209 |
+
def select_predict_all():
|
| 210 |
+
"""Select all dimensions"""
|
| 211 |
+
return gr.update(value=PREDICT_ALL_SELECTED_COLUMNS)
|
| 212 |
+
|
| 213 |
+
def on_predict_dimension_selection_change(selected_columns, full_df):
|
| 214 |
+
"""Handle dimension selection changes and update the dataframe"""
|
| 215 |
+
# Always include model and Overall columns
|
| 216 |
+
present_columns = ['model', 'Overall']
|
| 217 |
+
|
| 218 |
+
# Add selected columns
|
| 219 |
+
for col in selected_columns:
|
| 220 |
+
if col not in present_columns and col in full_df.columns:
|
| 221 |
+
present_columns.append(col)
|
| 222 |
+
|
| 223 |
+
# Filter dataframe to show only selected columns
|
| 224 |
+
updated_data = full_df[present_columns]
|
| 225 |
+
|
| 226 |
+
# Determine datatypes
|
| 227 |
+
datatypes = []
|
| 228 |
+
for col in present_columns:
|
| 229 |
+
if col == 'model':
|
| 230 |
+
datatypes.append('markdown')
|
| 231 |
+
elif col in ['params', 'activate_params']:
|
| 232 |
+
datatypes.append('number')
|
| 233 |
+
else:
|
| 234 |
+
datatypes.append('str')
|
| 235 |
+
|
| 236 |
+
return gr.update(value=updated_data, datatype=datatypes, headers=present_columns)
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def init_predict_leaderboard(dataframe):
|
| 240 |
+
"""Initialize the Predict leaderboard with given dataframe"""
|
| 241 |
+
if dataframe is None or dataframe.empty:
|
| 242 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 243 |
+
|
| 244 |
+
# Get columns that exist in the dataframe
|
| 245 |
+
available_default_cols = [col for col in PREDICT_DEFAULT_DISPLAYED_COLUMNS if col in dataframe.columns]
|
| 246 |
+
|
| 247 |
+
# Filter dataframe to show only default columns initially
|
| 248 |
+
display_df = dataframe[available_default_cols]
|
| 249 |
+
|
| 250 |
+
# Determine datatypes dynamically
|
| 251 |
+
datatypes = []
|
| 252 |
+
for col in display_df.columns:
|
| 253 |
+
if col == 'model':
|
| 254 |
+
datatypes.append('markdown')
|
| 255 |
+
elif col in ['params', 'activate_params']:
|
| 256 |
+
datatypes.append('number')
|
| 257 |
+
else:
|
| 258 |
+
datatypes.append('str') # All numeric columns are now formatted as strings
|
| 259 |
+
|
| 260 |
+
# Create the UI components
|
| 261 |
+
with gr.Row():
|
| 262 |
+
with gr.Column(scale=1):
|
| 263 |
+
domain_score_btn = gr.Button("Domain Score", size="md")
|
| 264 |
+
quality_score_btn = gr.Button("Quality Score", size="md")
|
| 265 |
+
select_all_btn = gr.Button("Select All", size="md")
|
| 266 |
+
deselect_btn = gr.Button("Deselect All", size="md")
|
| 267 |
+
|
| 268 |
+
with gr.Column(scale=4):
|
| 269 |
+
# Get all dimension columns (exclude model, Overall, scores, and params)
|
| 270 |
+
dimension_choices = [col for col in dataframe.columns
|
| 271 |
+
if col not in PREDICT_NEVER_HIDDEN_COLUMNS + PREDICT_HIDDEN_COLUMNS]
|
| 272 |
+
|
| 273 |
+
checkbox_group = gr.CheckboxGroup(
|
| 274 |
+
choices=dimension_choices,
|
| 275 |
+
value=[col for col in PREDICT_DEFAULT_DISPLAYED_COLUMNS if col in dimension_choices],
|
| 276 |
+
label="Evaluation Dimensions",
|
| 277 |
+
interactive=True,
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
data_component = gr.Dataframe(
|
| 281 |
+
value=display_df,
|
| 282 |
+
headers=list(display_df.columns),
|
| 283 |
+
datatype=datatypes,
|
| 284 |
+
interactive=False,
|
| 285 |
+
visible=True,
|
| 286 |
+
wrap=False,
|
| 287 |
+
column_widths=["320px"] + ["200px"] * (len(display_df.columns) - 1),
|
| 288 |
+
pinned_columns=1,
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
# Setup event handlers
|
| 292 |
+
domain_score_btn.click(
|
| 293 |
+
select_predict_domain_score,
|
| 294 |
+
inputs=None,
|
| 295 |
+
outputs=[checkbox_group]
|
| 296 |
+
).then(
|
| 297 |
+
fn=on_predict_dimension_selection_change,
|
| 298 |
+
inputs=[checkbox_group, gr.State(dataframe)],
|
| 299 |
+
outputs=data_component
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
quality_score_btn.click(
|
| 303 |
+
select_predict_quality_score,
|
| 304 |
+
inputs=None,
|
| 305 |
+
outputs=[checkbox_group]
|
| 306 |
+
).then(
|
| 307 |
+
fn=on_predict_dimension_selection_change,
|
| 308 |
+
inputs=[checkbox_group, gr.State(dataframe)],
|
| 309 |
+
outputs=data_component
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
deselect_btn.click(
|
| 313 |
+
deselect_predict_all,
|
| 314 |
+
inputs=None,
|
| 315 |
+
outputs=[checkbox_group]
|
| 316 |
+
).then(
|
| 317 |
+
fn=on_predict_dimension_selection_change,
|
| 318 |
+
inputs=[checkbox_group, gr.State(dataframe)],
|
| 319 |
+
outputs=data_component
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
select_all_btn.click(
|
| 323 |
+
select_predict_all,
|
| 324 |
+
inputs=None,
|
| 325 |
+
outputs=[checkbox_group]
|
| 326 |
+
).then(
|
| 327 |
+
fn=on_predict_dimension_selection_change,
|
| 328 |
+
inputs=[checkbox_group, gr.State(dataframe)],
|
| 329 |
+
outputs=data_component
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
checkbox_group.change(
|
| 333 |
+
fn=on_predict_dimension_selection_change,
|
| 334 |
+
inputs=[checkbox_group, gr.State(dataframe)],
|
| 335 |
+
outputs=data_component
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
return data_component
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
# ============================================================================
|
| 342 |
+
# Reason Tab Configuration and Utilities
|
| 343 |
+
# ============================================================================
|
| 344 |
+
|
| 345 |
+
# Column name mapping for display
|
| 346 |
+
REASON_COLUMN_MAPPING = {
|
| 347 |
+
'Physical world': 'Physics'
|
| 348 |
+
}
|
| 349 |
+
|
| 350 |
+
# Desired column order
|
| 351 |
+
REASON_COLUMN_ORDER = [
|
| 352 |
+
'model',
|
| 353 |
+
'Overall',
|
| 354 |
+
'Common Sense',
|
| 355 |
+
'Embodied Reasoning',
|
| 356 |
+
'Space',
|
| 357 |
+
'Time',
|
| 358 |
+
'Physics',
|
| 359 |
+
'BridgeData V2',
|
| 360 |
+
'RoboVQA',
|
| 361 |
+
'RoboFail',
|
| 362 |
+
'Agibot',
|
| 363 |
+
'HoloAssist',
|
| 364 |
+
'AV',
|
| 365 |
+
'params',
|
| 366 |
+
'activate_params'
|
| 367 |
+
]
|
| 368 |
+
|
| 369 |
+
# Columns to hide by default (but still available for filtering/selection)
|
| 370 |
+
REASON_HIDDEN_COLUMNS = ['params', 'activate_params']
|
| 371 |
+
|
| 372 |
+
# Reasoning dimensions (for selection button)
|
| 373 |
+
REASON_COMMON_SENSE_DIMENSIONS = [
|
| 374 |
+
'Common Sense',
|
| 375 |
+
'Space',
|
| 376 |
+
'Time',
|
| 377 |
+
'Physics',
|
| 378 |
+
]
|
| 379 |
+
|
| 380 |
+
# Domain dimensions (for selection button)
|
| 381 |
+
REASON_EMBODIED_REASONING_DIMENSIONS = [
|
| 382 |
+
'Embodied Reasoning',
|
| 383 |
+
'Space',
|
| 384 |
+
'Time',
|
| 385 |
+
'Physics',
|
| 386 |
+
'BridgeData V2',
|
| 387 |
+
'RoboVQA',
|
| 388 |
+
'RoboFail',
|
| 389 |
+
'Agibot',
|
| 390 |
+
'HoloAssist',
|
| 391 |
+
'AV',
|
| 392 |
+
]
|
| 393 |
+
|
| 394 |
+
REASON_DESELECTED_COLUMNS = [
|
| 395 |
+
'Common Sense',
|
| 396 |
+
'Embodied Reasoning',
|
| 397 |
+
]
|
| 398 |
+
|
| 399 |
+
REASON_ALL_SELECTED_COLUMNS = [
|
| 400 |
+
'Common Sense',
|
| 401 |
+
'Embodied Reasoning',
|
| 402 |
+
'Space',
|
| 403 |
+
'Time',
|
| 404 |
+
'Physics',
|
| 405 |
+
'BridgeData V2',
|
| 406 |
+
'RoboVQA',
|
| 407 |
+
'RoboFail',
|
| 408 |
+
'Agibot',
|
| 409 |
+
'HoloAssist',
|
| 410 |
+
'AV',
|
| 411 |
+
]
|
| 412 |
+
|
| 413 |
+
# Columns that can never be deselected
|
| 414 |
+
REASON_NEVER_HIDDEN_COLUMNS = ['model', 'Overall']
|
| 415 |
+
|
| 416 |
+
# Columns displayed by default (using renamed column names)
|
| 417 |
+
REASON_DEFAULT_DISPLAYED_COLUMNS = REASON_NEVER_HIDDEN_COLUMNS + REASON_ALL_SELECTED_COLUMNS
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
def load_reason_csv(csv_path):
|
| 421 |
+
"""Load CSV and apply column mapping and ordering"""
|
| 422 |
+
df = pd.read_csv(csv_path)
|
| 423 |
+
|
| 424 |
+
# Apply column mapping
|
| 425 |
+
df = df.rename(columns=REASON_COLUMN_MAPPING)
|
| 426 |
+
|
| 427 |
+
# Reorder columns (only keep columns that exist in the dataframe)
|
| 428 |
+
available_cols = [col for col in REASON_COLUMN_ORDER if col in df.columns]
|
| 429 |
+
df = df[available_cols]
|
| 430 |
+
|
| 431 |
+
# Convert model names to HuggingFace links
|
| 432 |
+
if 'model' in df.columns:
|
| 433 |
+
df['model'] = df['model'].apply(create_model_link)
|
| 434 |
+
|
| 435 |
+
# Format numbers to ensure decimal places (1 decimal for integers)
|
| 436 |
+
for col in df.columns:
|
| 437 |
+
if col not in ['model', 'params', 'activate_params'] and pd.api.types.is_numeric_dtype(df[col]):
|
| 438 |
+
df[col] = df[col].apply(lambda x: f"{x:.1f}" if pd.notna(x) else x)
|
| 439 |
+
|
| 440 |
+
return df
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
def select_reason_common_sense_dimensions():
|
| 444 |
+
"""Return reasoning dimensions for checkbox selection"""
|
| 445 |
+
return gr.update(value=REASON_COMMON_SENSE_DIMENSIONS)
|
| 446 |
+
|
| 447 |
+
|
| 448 |
+
def select_reason_embodied_reasoning_dimensions():
|
| 449 |
+
"""Return domain dimensions for checkbox selection"""
|
| 450 |
+
return gr.update(value=REASON_EMBODIED_REASONING_DIMENSIONS)
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
def deselect_reason_all():
|
| 454 |
+
"""Deselect all dimensions"""
|
| 455 |
+
return gr.update(value=REASON_DESELECTED_COLUMNS)
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
def select_reason_all():
|
| 459 |
+
"""Select all dimensions"""
|
| 460 |
+
return gr.update(value=REASON_ALL_SELECTED_COLUMNS)
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
def on_reason_dimension_selection_change(selected_columns, full_df):
|
| 464 |
+
"""Handle dimension selection changes and update the dataframe"""
|
| 465 |
+
# Always include model and Overall columns
|
| 466 |
+
present_columns = ['model', 'Overall']
|
| 467 |
+
|
| 468 |
+
# Add selected columns
|
| 469 |
+
for col in selected_columns:
|
| 470 |
+
if col not in present_columns and col in full_df.columns:
|
| 471 |
+
present_columns.append(col)
|
| 472 |
+
|
| 473 |
+
# Filter dataframe to show only selected columns
|
| 474 |
+
updated_data = full_df[present_columns]
|
| 475 |
+
|
| 476 |
+
# Determine datatypes
|
| 477 |
+
datatypes = []
|
| 478 |
+
for col in present_columns:
|
| 479 |
+
if col == 'model':
|
| 480 |
+
datatypes.append('markdown')
|
| 481 |
+
elif col in ['params', 'activate_params']:
|
| 482 |
+
datatypes.append('number')
|
| 483 |
+
else:
|
| 484 |
+
datatypes.append('str')
|
| 485 |
+
|
| 486 |
+
return gr.update(value=updated_data, datatype=datatypes, headers=present_columns)
|
| 487 |
+
|
| 488 |
+
|
| 489 |
+
def init_reason_leaderboard(dataframe):
|
| 490 |
+
"""Initialize the Reason leaderboard with given dataframe"""
|
| 491 |
+
if dataframe is None or dataframe.empty:
|
| 492 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 493 |
+
|
| 494 |
+
# Get columns that exist in the dataframe
|
| 495 |
+
available_default_cols = [col for col in REASON_DEFAULT_DISPLAYED_COLUMNS if col in dataframe.columns]
|
| 496 |
+
|
| 497 |
+
# Filter dataframe to show only default columns initially
|
| 498 |
+
display_df = dataframe[available_default_cols]
|
| 499 |
+
|
| 500 |
+
# Determine datatypes dynamically
|
| 501 |
+
datatypes = []
|
| 502 |
+
for col in display_df.columns:
|
| 503 |
+
if col == 'model':
|
| 504 |
+
datatypes.append('markdown')
|
| 505 |
+
elif col in ['params', 'activate_params']:
|
| 506 |
+
datatypes.append('number')
|
| 507 |
+
else:
|
| 508 |
+
datatypes.append('str') # All numeric columns are now formatted as strings
|
| 509 |
+
|
| 510 |
+
# Create the UI components
|
| 511 |
+
with gr.Row():
|
| 512 |
+
with gr.Column(scale=1):
|
| 513 |
+
common_sense_btn = gr.Button("Common Sense", size="md")
|
| 514 |
+
embodied_reasoning_btn = gr.Button("Embodied Reasoning", size="md")
|
| 515 |
+
select_all_btn = gr.Button("Select All", size="md")
|
| 516 |
+
deselect_btn = gr.Button("Deselect All", size="md")
|
| 517 |
+
|
| 518 |
+
with gr.Column(scale=4):
|
| 519 |
+
# Get all dimension columns (exclude model, Overall, and params)
|
| 520 |
+
dimension_choices = [col for col in dataframe.columns
|
| 521 |
+
if col not in REASON_NEVER_HIDDEN_COLUMNS + REASON_HIDDEN_COLUMNS]
|
| 522 |
+
|
| 523 |
+
checkbox_group = gr.CheckboxGroup(
|
| 524 |
+
choices=dimension_choices,
|
| 525 |
+
value=[col for col in REASON_DEFAULT_DISPLAYED_COLUMNS if col in dimension_choices],
|
| 526 |
+
label="Evaluation Dimensions",
|
| 527 |
+
interactive=True,
|
| 528 |
+
)
|
| 529 |
+
|
| 530 |
+
data_component = gr.Dataframe(
|
| 531 |
+
value=display_df,
|
| 532 |
+
headers=list(display_df.columns),
|
| 533 |
+
datatype=datatypes,
|
| 534 |
+
interactive=False,
|
| 535 |
+
visible=True,
|
| 536 |
+
wrap=False, # Allow horizontal scrolling, don't wrap content
|
| 537 |
+
column_widths=["320px"] + ["200px"] * (len(display_df.columns) - 1),
|
| 538 |
+
pinned_columns=1,
|
| 539 |
+
)
|
| 540 |
+
|
| 541 |
+
# Setup event handlers
|
| 542 |
+
common_sense_btn.click(
|
| 543 |
+
select_reason_common_sense_dimensions,
|
| 544 |
+
inputs=None,
|
| 545 |
+
outputs=[checkbox_group]
|
| 546 |
+
).then(
|
| 547 |
+
fn=on_reason_dimension_selection_change,
|
| 548 |
+
inputs=[checkbox_group, gr.State(dataframe)],
|
| 549 |
+
outputs=data_component
|
| 550 |
+
)
|
| 551 |
+
|
| 552 |
+
embodied_reasoning_btn.click(
|
| 553 |
+
select_reason_embodied_reasoning_dimensions,
|
| 554 |
+
inputs=None,
|
| 555 |
+
outputs=[checkbox_group]
|
| 556 |
+
).then(
|
| 557 |
+
fn=on_reason_dimension_selection_change,
|
| 558 |
+
inputs=[checkbox_group, gr.State(dataframe)],
|
| 559 |
+
outputs=data_component
|
| 560 |
+
)
|
| 561 |
+
|
| 562 |
+
deselect_btn.click(
|
| 563 |
+
deselect_reason_all,
|
| 564 |
+
inputs=None,
|
| 565 |
+
outputs=[checkbox_group]
|
| 566 |
+
).then(
|
| 567 |
+
fn=on_reason_dimension_selection_change,
|
| 568 |
+
inputs=[checkbox_group, gr.State(dataframe)],
|
| 569 |
+
outputs=data_component
|
| 570 |
+
)
|
| 571 |
+
|
| 572 |
+
select_all_btn.click(
|
| 573 |
+
select_reason_all,
|
| 574 |
+
inputs=None,
|
| 575 |
+
outputs=[checkbox_group]
|
| 576 |
+
).then(
|
| 577 |
+
fn=on_reason_dimension_selection_change,
|
| 578 |
+
inputs=[checkbox_group, gr.State(dataframe)],
|
| 579 |
+
outputs=data_component
|
| 580 |
+
)
|
| 581 |
+
|
| 582 |
+
checkbox_group.change(
|
| 583 |
+
fn=on_reason_dimension_selection_change,
|
| 584 |
+
inputs=[checkbox_group, gr.State(dataframe)],
|
| 585 |
+
outputs=data_component
|
| 586 |
+
)
|
| 587 |
+
|
| 588 |
+
return data_component
|
| 589 |
+
|
| 590 |
+
|
| 591 |
+
# ============================================================================
|
| 592 |
+
# Main Application
|
| 593 |
+
# ============================================================================
|
| 594 |
+
|
| 595 |
+
demo = gr.Blocks()
|
| 596 |
+
with demo:
|
| 597 |
+
gr.HTML(TITLE)
|
| 598 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 599 |
+
|
| 600 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 601 |
+
with gr.TabItem("🎨 Predict", elem_id="predict-tab", id=0):
|
| 602 |
+
# Load data for Predict tab
|
| 603 |
+
predict_df = load_predict_csv("data/predict-leaderboard.csv")
|
| 604 |
+
predict_leaderboard = init_predict_leaderboard(predict_df)
|
| 605 |
+
|
| 606 |
+
with gr.TabItem("🔄 Transfer", elem_id="transfer-tab", id=1):
|
| 607 |
+
gr.Markdown("## Coming Soon", elem_classes="markdown-text")
|
| 608 |
+
|
| 609 |
+
with gr.TabItem("🧠 Reason", elem_id="reason-tab", id=2):
|
| 610 |
+
# Load data for Reason tab
|
| 611 |
+
reason_df = load_reason_csv("data/reason-leaderboard.csv")
|
| 612 |
+
reason_leaderboard = init_reason_leaderboard(reason_df)
|
| 613 |
+
|
| 614 |
+
with gr.TabItem("ℹ️ About", elem_id="about-tab", id=3):
|
| 615 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 616 |
+
|
| 617 |
+
demo.launch()
|
data/predict-leaderboard.csv
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model,params,activate_params,Overall,AV,Common,Human,Industry,Misc,Physics,Robot,Avg Score/Video,Common+Misc,Domain Score,Aesthetic,BG Consistency,Image Quality,Motion,Overall Consistency,Subject Consistency,I2V BG,I2V Subject,Quality Score
|
| 2 |
+
nvidia/Cosmos-Predict2.5-2B,2.0,2.0,81.0,66.1,95.9,81.4,87.8,91.0,93.9,80.8,84.4,94.1,84.0,52.4,94.2,70.8,99.1,20.1,92.5,97.4,96.6,77.9
|
| 3 |
+
Wan-AI/Wan2.2-I2V-A14B,14.0,14.0,80.6,66.3,94.6,82.1,89.2,90.9,91.8,81.7,84.5,93.2,84.1,51.2,93.7,69.6,98.3,20.4,91.6,96.6,96.0,77.2
|
| 4 |
+
Wan-AI/Wan2.2-TI2V-5B,5.0,5.0,80.4,65.2,95.3,83.0,88.4,89.6,91.5,79.3,84.1,93.1,83.4,51.9,93.7,69.9,98.8,20.3,91.8,96.7,95.9,77.4
|
| 5 |
+
Wan-AI/Wan2.1-I2V-14B-720P,14.0,14.0,79.7,66.9,93.7,80.1,89.7,85.5,88.7,80.1,82.9,90.6,82.7,51.5,93.1,70.1,98.1,20.4,90.0,96.0,95.2,76.8
|
data/reason-leaderboard.csv
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model,params,activate_params,Overall,AV,Agibot,BridgeData V2,Common Sense,Embodied Reasoning,HoloAssist,Physics,RoboFail,RoboVQA,Space,Time
|
| 2 |
+
Qwen/Qwen3-VL-30B-A3B-Instruct,30.0,3.0,60.6,49.0,43.0,36.0,59.9,61.3,81.0,59.7,67.0,89.1,52.5,62.1
|
| 3 |
+
Qwen/Qwen2.5-VL-72B-Instruct,72.0,72.0,56.8,39.0,35.0,35.0,57.9,55.7,58.0,52.2,73.0,90.9,56.2,62.8
|
| 4 |
+
nvidia/Cosmos-Reason1-7B,7.0,7.0,54.3,47.0,42.0,41.0,50.7,57.9,57.0,44.2,65.0,91.8,57.5,53.7
|
| 5 |
+
Qwen/Qwen2.5-VL-32B-Instruct,32.0,32.0,51.9,33.0,34.0,32.0,53.8,50.0,55.0,45.6,52.0,90.0,50.0,61.1
|
| 6 |
+
Qwen/Qwen2.5-VL-7B-Instruct,7.0,7.0,50.3,45.0,44.0,33.0,47.7,53.0,47.0,37.6,62.0,83.6,47.5,55.4
|
| 7 |
+
Qwen/Qwen2.5-VL-3B-Instruct,3.0,3.0,48.1,29.0,36.0,31.0,47.4,48.9,48.0,42.9,63.0,82.7,47.5,50.7
|
| 8 |
+
Qwen/Qwen2-VL-2B-Instruct,2.0,2.0,40.0,51.0,24.0,25.0,44.5,35.4,28.0,41.2,34.0,49.1,32.5,50.3
|
| 9 |
+
Qwen/Qwen2-VL-72B-Instruct,72.0,72.0,40.0,25.0,31.0,28.0,45.0,34.9,21.0,40.3,49.0,53.6,50.0,47.3
|
| 10 |
+
Qwen/Qwen2-VL-7B-Instruct,7.0,7.0,38.8,24.0,28.0,28.0,44.5,33.1,26.0,44.7,38.0,52.7,38.8,46.0
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
pandas
|