Spaces:
Build error
Build error
import os | |
import os.path as osp | |
import cv2 | |
import numpy as np | |
import numpy.random as npr | |
import torch | |
import torch.nn.functional as F | |
import torchvision.transforms as tvtrans | |
import PIL.Image | |
from tqdm import tqdm | |
from PIL import Image | |
import copy | |
import json | |
from collections import OrderedDict | |
####### | |
# css # | |
####### | |
css_empty = "" | |
css_version_4_11_0 = """ | |
#customized_imbox { | |
min-height: 450px; | |
max-height: 450px; | |
} | |
#customized_imbox>div[data-testid="image"] { | |
min-height: 450px; | |
} | |
#customized_imbox>div[data-testid="image"]>span[data-testid="source-select"] { | |
max-height: 0px; | |
} | |
#customized_imbox>div[data-testid="image"]>span[data-testid="source-select"]>button { | |
max-height: 0px; | |
} | |
#customized_imbox>div[data-testid="image"]>div.upload-container>div.image-frame>img { | |
position: absolute; | |
top: 50%; | |
left: 50%; | |
transform: translateX(-50%) translateY(-50%); | |
width: unset; | |
height: unset; | |
max-height: 450px; | |
} | |
#customized_imbox>div.unpadded_box { | |
min-height: 450px; | |
} | |
#myinst { | |
font-size: 0.8rem; | |
margin: 0rem; | |
color: #6B7280; | |
} | |
#maskinst { | |
text-align: justify; | |
min-width: 1200px; | |
} | |
#maskinst>img { | |
min-width:399px; | |
max-width:450px; | |
vertical-align: top; | |
display: inline-block; | |
} | |
#maskinst:after { | |
content: ""; | |
width: 100%; | |
display: inline-block; | |
} | |
""" | |
########## | |
# helper # | |
########## | |
def highlight_print(info): | |
print('') | |
print(''.join(['#']*(len(info)+4))) | |
print('# '+info+' #') | |
print(''.join(['#']*(len(info)+4))) | |
print('') | |
def auto_dropdown(name, choices_od, value): | |
import gradio as gr | |
option_list = [pi for pi in choices_od.keys()] | |
return gr.Dropdown(label=name, choices=option_list, value=value) | |
def load_sd_from_file(target): | |
if osp.splitext(target)[-1] == '.ckpt': | |
sd = torch.load(target, map_location='cpu')['state_dict'] | |
elif osp.splitext(target)[-1] == '.pth': | |
sd = torch.load(target, map_location='cpu') | |
elif osp.splitext(target)[-1] == '.safetensors': | |
from safetensors.torch import load_file as stload | |
sd = OrderedDict(stload(target, device='cpu')) | |
else: | |
assert False, "File type must be .ckpt or .pth or .safetensors" | |
return sd | |
def torch_to_numpy(x): | |
return x.detach().to('cpu').numpy() | |
if __name__ == '__main__': | |
pass | |