praeclarumjj3's picture
:zap: add code
9fa3d89
raw
history blame
9.36 kB
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from transformers import AutoConfig, AutoModelForCausalLM, \
Phi3Config, Phi3Model, Phi3ForCausalLM
from transformers.modeling_outputs import CausalLMOutputWithPast
from dataclasses import dataclass
from ..ola_arch import OlaLlavaMetaModel, OlaLlavaMetaForCausalLM
import torch.distributed as dist
try:
import wandb
except:
pass
import os
from torch.nn import CrossEntropyLoss
from .base_lm import BaseCausalLM
from .base_ola_vlm import BaseOLA_VLM
@dataclass
class OlaCausalLLMOutputWithPast(CausalLMOutputWithPast):
image_embs: Optional[Tuple[torch.FloatTensor]] = None
seg_embs: Optional[Tuple[torch.FloatTensor]] = None
depth_embs: Optional[Tuple[torch.FloatTensor]] = None
depth_preds: Optional[Tuple[torch.FloatTensor]] = None
class OlaLlavaPhi3Config(Phi3Config):
model_type = "ola_phi3"
class OlaLlavaPhi3Model(OlaLlavaMetaModel, Phi3Model):
config_class = OlaLlavaPhi3Config
def __init__(self, config: Phi3Config):
super(OlaLlavaPhi3Model, self).__init__(config)
class OlaLlavaPhi3ForCausalLM(Phi3ForCausalLM, OlaLlavaMetaForCausalLM, BaseOLA_VLM):
config_class = OlaLlavaPhi3Config
def __init__(self, config):
super(Phi3ForCausalLM, self).__init__(config)
self.model = OlaLlavaPhi3Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.config = config
self.is_use_reference_model = False
self.NUM_SYS_TOKENS = 13
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def _forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
pil_images = None,
gen_mask: Optional[torch.FloatTensor] = None,
seg_mask: Optional[torch.FloatTensor] = None,
depth_mask: Optional[torch.FloatTensor] = None,
) -> Union[Tuple, OlaCausalLLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=True,
return_dict=return_dict,
)
hidden_states = outputs[0]
layer_states = outputs[-1][1:]
logits = self.lm_head(hidden_states)
logits = logits.float()
text_loss = None
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
text_loss = loss_fct(shift_logits, shift_labels)
dinov2_emb, dinov2_loss = self.dinov2_emb_forward(pil_images, layer_states, hidden_states, seg_mask)
depth_preds, depth_embs, depth_loss, depth_l1_loss, depth_cont_loss = self.depth_emb_forward(pil_images, layer_states, depth_mask)
seg_embs, seg_loss, seg_l1_loss, seg_contrastive_loss = self.seg_emb_forward(pil_images, hidden_states, layer_states, seg_mask)
img_embs, gen_loss, gen_mse_loss, gen_con_loss = self.gen_emb_forward(pil_images, hidden_states, layer_states, gen_mask)
if text_loss is not None:
loss = text_loss + seg_loss + depth_loss + gen_loss + dinov2_loss
try:
if dist.get_rank() == 0:
if loss > text_loss:
log_dict = {
"depth_loss": depth_loss,
"gen_loss": gen_loss,
"depth_l1_loss": depth_l1_loss,
"depth_contrastive_loss": depth_cont_loss,
"dinov2_loss": dinov2_loss,
"gen_mse_loss": gen_mse_loss,
"gen_contrastive_loss": gen_con_loss,
"seg_loss": seg_loss,
"seg_l1_loss": seg_l1_loss,
"seg_cosine-emb_loss": seg_ce_loss,
"seg_contrastive_loss": seg_contrastive_loss,
"text_loss": text_loss,
"loss": loss,
}
filtered_log_dict = {key: value for key, value in log_dict.items() if value > 0}
wandb.log(filtered_log_dict)
else:
wandb.log({
"text_loss": text_loss,
"loss": loss,
})
self.steps += 1
except:
pass
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return OlaCausalLLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_embs=img_embs,
seg_embs=seg_embs,
depth_embs=depth_embs,
depth_preds=depth_preds,
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
image_sizes: Optional[List[List[int]]] = None,
return_dict: Optional[bool] = None,
pil_images: Optional[List[object]] = None,
gen_mask: Optional[torch.FloatTensor] = None,
seg_mask: Optional[torch.FloatTensor] = None,
depth_mask: Optional[torch.FloatTensor] = None,
**kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
if inputs_embeds is None:
(
input_ids,
position_ids,
attention_mask,
past_key_values,
inputs_embeds,
labels,
) = self.prepare_inputs_labels_for_multimodal(
input_ids,
position_ids,
attention_mask,
past_key_values,
labels,
images,
image_sizes
)
return self._forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
pil_images=pil_images,
gen_mask=gen_mask,
seg_mask=seg_mask,
depth_mask=depth_mask,
)
AutoConfig.register("ola_phi3", OlaLlavaPhi3Config)
AutoModelForCausalLM.register(OlaLlavaPhi3Config, OlaLlavaPhi3ForCausalLM)