shethjenil's picture
Upload folder using huggingface_hub
c2ae55d verified
raw
history blame
15.1 kB
import numpy as np
from typing import List
from numba import jit
import numpy as np
from scipy import signal
from typing import Tuple
from .core import compute_warping_path
from .cost import *
def compute_optimal_chroma_shift(f_chroma1: np.ndarray,
f_chroma2: np.ndarray,
chroma_transpositions: np.ndarray = np.arange(0, 12),
step_sizes: np.ndarray = np.array([[1, 0], [0, 1], [1, 1]], int),
step_weights: np.ndarray = np.array([1.0, 1.0, 1.0], np.float64)) -> int:
"""Computes the optimal chroma shift which minimizes the DTW cost.
Parameters
----------
f_chroma1 : np.ndarray [shape=(d_chroma, N_chroma)]
First chroma vector
f_chroma2 : np.ndarray [shape=(d_chroma, N_chroma)]
Second chroma vector
step_sizes : np.ndarray
DTW step sizes (default: np.array([[1, 0], [0, 1], [1, 1]]))
step_weights : np.ndarray
DTW step weights (default: np.array([1.0, 1.0, 1.0]))
chroma_transpositions : np.ndarray
Array of chroma shifts (default: np.arange(0, 11))
Returns
-------
opt_chroma_shift : int
Optimal chroma shift which minimizes the DTW cost.
"""
if f_chroma2.shape[1] >= 9000 or f_chroma1.shape[1] >= 9000:
print("Warning: You are attempting to find the optimal chroma shift on sequences of length >= 9000. "
"This involves full DTW computation. You'll probably want to smooth and downsample your sequences to a"
" lower feature resolution before doing this.")
opt_chroma_shift = 0
dtw_cost = np.inf
for chroma_shift in chroma_transpositions:
cost_matrix_tmp = cosine_distance(f_chroma1, shift_chroma_vectors(f_chroma2, chroma_shift))
D, _, _ = compute_warping_path(cost_matrix_tmp, step_sizes=step_sizes, step_weights=step_weights)
if D[-1, -1] < dtw_cost:
dtw_cost = D[-1, -1]
opt_chroma_shift = chroma_shift
return opt_chroma_shift
def compute_warping_paths_from_cost_matrices(cost_matrices: List,
step_sizes: np.array = np.array([[1, 0], [0, 1], [1, 1]], int),
step_weights: np.array = np.array([1.0, 1.0, 1.0], np.float64),
implementation: str = 'synctoolbox') -> List:
"""Computes a path via DTW on each matrix in cost_matrices
Parameters
----------
cost_matrices : list
List of cost matrices
step_sizes : np.ndarray
DTW step sizes (default: np.array([[1, 0], [0, 1], [1, 1]]))
step_weights : np.ndarray
DTW step weights (default: np.array([1.0, 1.0, 1.0]))
implementation : str
Choose among 'synctoolbox' and 'librosa' (default: 'synctoolbox')
Returns
-------
wp_list : list
List of warping paths
"""
return [compute_warping_path(C=C,
step_sizes=step_sizes,
step_weights=step_weights,
implementation=implementation)[2] for C in cost_matrices]
def compute_cost_matrices_between_anchors(f_chroma1: np.ndarray,
f_chroma2: np.ndarray,
anchors: np.ndarray,
f_onset1: np.ndarray = None,
f_onset2: np.ndarray = None,
alpha: float = 0.5) -> List:
"""Computes cost matrices for the given features between subsequent
pairs of anchors points.
Parameters
----------
f_chroma1 : np.ndarray [shape=(12, N)]
Chroma feature matrix of the first sequence
f_chroma2 : np.ndarray [shape=(12, M)]
Chroma feature matrix of the second sequence
anchors : np.ndarray [shape=(2, R)]
Anchor sequence
f_onset1 : np.ndarray [shape=(L, N)]
Onset feature matrix of the first sequence
f_onset2 : np.ndarray [shape=(L, M)]
Onset feature matrix of the second sequence
alpha: float
Alpha parameter to weight the cost functions.
Returns
-------
cost_matrices: list
List containing cost matrices
"""
high_res = False
if f_onset1 is not None and f_onset2 is not None:
high_res = True
cost_matrices = list()
for k in range(anchors.shape[1] - 1):
a1 = np.array(anchors[:, k].astype(int), copy=True)
a2 = np.array(anchors[:, k + 1].astype(int), copy=True)
if high_res:
cost_matrices.append(compute_high_res_cost_matrix(f_chroma1[:, a1[0]: a2[0] + 1],
f_chroma2[:, a1[1]: a2[1] + 1],
f_onset1[:, a1[0]: a2[0] + 1],
f_onset2[:, a1[1]: a2[1] + 1],
weights=np.array([alpha, 1-alpha])))
else:
cost_matrices.append(cosine_distance(f_chroma1[:, a1[0]: a2[0] + 1],
f_chroma2[:, a1[1]: a2[1] + 1]))
return cost_matrices
def build_path_from_warping_paths(warping_paths: List,
anchors: np.ndarray = None) -> np.ndarray:
"""The function builds a path from a given list of warping paths
and the anchors used to obtain these paths. The indices of the original
warping paths are adapted such that they cross the anchors.
Parameters
----------
warping_paths : list
List of warping paths
anchors : np.ndarray [shape=(2, N)]
Anchor sequence
Returns
-------
path : np.ndarray [shape=(2, M)]
Merged path
"""
if anchors is None:
# When no anchor points are given, we can construct them from the
# subpaths in the wp_list
# To do this, we assume that the first path's element is the starting
# anchor
anchors = warping_paths[0][:, 0]
# Retrieve the last element of each path
anchors_tmp = np.zeros(len(warping_paths), np.float32)
for idx, x in enumerate(warping_paths):
anchors_tmp[idx] = x[:, -1]
# Correct indices, such that the indices of the anchors are given on a
# common path. Each anchor a_l = [Nnew_[l+1];Mnew_[l+1]]
# Nnew_[l+1] = N_l + N_[l+1] -1
# Mnew_[l+1] = M_l + M_[l+1] -1
anchors_tmp = np.cumsum(anchors_tmp, axis=1)
anchors_tmp[:, 1:] = anchors_tmp[:, 1:] - [np.arange(1, anchors_tmp.shape[1]),
np.arange(1, anchors_tmp.shape[1])]
anchors = np.concatenate([anchors, anchors_tmp], axis=1)
L = len(warping_paths) + 1
path = None
wp = None
for anchor_idx in range(1, L):
anchor1 = anchors[:, anchor_idx - 1]
anchor2 = anchors[:, anchor_idx]
wp = np.array(warping_paths[anchor_idx - 1], copy=True)
# correct indices in warpingPath
wp += np.repeat(anchor1.reshape(-1, 1), wp.shape[1], axis=1).astype(wp.dtype)
# consistency checks
assert np.array_equal(wp[:, 0], anchor1), 'First entry of warping path does not coincide with anchor point'
assert np.array_equal(wp[:, -1], anchor2), 'Last entry of warping path does not coincide with anchor point'
if path is None:
path = np.array(wp[:, :-1], copy=True)
else:
path = np.concatenate([path, wp[:, :-1]], axis=1)
# append last index of warping path
path = np.concatenate([path, wp[:, -1].reshape(-1, 1)], axis=1)
return path
def find_anchor_indices_in_warping_path(warping_path: np.ndarray,
anchors: np.ndarray) -> np.ndarray:
"""Compute the indices in the warping path that corresponds
to the elements in 'anchors'
Parameters
----------
warping_path : np.ndarray [shape=(2, N)]
Warping path
anchors : np.ndarray [shape=(2, M)]
Anchor sequence
Returns
-------
indices : np.ndarray [shape=(2, M)]
Anchor indices in the ``warping_path``
"""
indices = np.zeros(anchors.shape[1])
for k in range(anchors.shape[1]):
a = anchors[:, k]
indices[k] = np.where((a[0] == warping_path[0, :]) & (a[1] == warping_path[1, :]))[0]
return indices
def make_path_strictly_monotonic(P: np.ndarray) -> np.ndarray:
"""Compute strict alignment path from a warping path
Wrapper around "compute_strict_alignment_path_mask" from libfmp.
Parameters
----------
P: np.ndarray [shape=(2, N)]
Warping path
Returns
-------
P_mod: np.ndarray [shape=(2, M)]
Strict alignment path, M <= N
"""
P_mod = compute_strict_alignment_path_mask(P.T)
return P_mod.T
def compute_strict_alignment_path_mask(P):
"""Compute strict alignment path from a warping path
Notebook: C3/C3S3_MusicAppTempoCurve.ipynb
Args:
P (list or np.ndarray): Wapring path
Returns:
P_mod (list or np.ndarray): Strict alignment path
"""
P = np.array(P, copy=True)
N, M = P[-1]
# Get indices for strict monotonicity
keep_mask = (P[1:, 0] > P[:-1, 0]) & (P[1:, 1] > P[:-1, 1])
# Add first index to enforce start boundary condition
keep_mask = np.concatenate(([True], keep_mask))
# Remove all indices for of last row or column
keep_mask[(P[:, 0] == N) | (P[:, 1] == M)] = False
# Add last index to enforce end boundary condition
keep_mask[-1] = True
P_mod = P[keep_mask, :]
return P_mod
def evaluate_synchronized_positions(ground_truth_positions: np.ndarray,
synchronized_positions: np.ndarray,
tolerances: List = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 250]):
"""Compute standard evaluation measures for evaluating the quality of synchronized (musical) positions.
When synchronizing two versions of a piece of music, one can evaluate the quality of the resulting alignment
by comparing errors at musical positions (e.g. beats or measures) that appear in both versions.
This function implements two measures: mean absolute error at positions and the percentage of correctly transferred
measures given a threshold.
Parameters
----------
ground_truth_positions: np.ndarray [shape=N]
Positions (e.g. beat or measure positions) annotated in the target version of a piece of music, in milliseconds.
synchronized_positions: np.ndarray [shape=N]
The same musical positions as in 'ground_truth_positions' obtained by transfer using music synchronization,
in milliseconds.
tolerances: list of integers
Tolerances (in miliseconds) used for comparing annotated and synchronized positions.
Returns
-------
mean_absolute_error: float
Mean absolute error for synchronized positions, in miliseconds.
accuracy_at_tolerances: list of floats
Percentages of correctly transferred measures, for each entry in 'tolerances'.
"""
absolute_errors_at_positions = np.abs(synchronized_positions - ground_truth_positions)
print('Measure transfer from recording 1 to 2 yielded:')
mean_absolute_error = np.mean(absolute_errors_at_positions)
print('\nMean absolute error (MAE): %.2fms (standard deviation: %.2fms)' % (mean_absolute_error,
np.std(absolute_errors_at_positions)))
print('\nAccuracy of transferred positions at different tolerances:')
print('\t\t\tAccuracy')
print('################################')
accuracy_at_tolerances = []
for tolerance in tolerances:
accuracy = np.mean((absolute_errors_at_positions < tolerance)) * 100.0
accuracy_at_tolerances.append(accuracy)
print('Tolerance: {} ms \t{:.2f} %'.format(tolerance, accuracy))
return mean_absolute_error, accuracy_at_tolerances
def smooth_downsample_feature(f_feature: np.ndarray,
input_feature_rate: float,
win_len_smooth: int = 0,
downsamp_smooth: int = 1) -> Tuple[np.ndarray, float]:
"""Temporal smoothing and downsampling of a feature sequence
Parameters
----------
f_feature : np.ndarray
Input feature sequence, size dxN
input_feature_rate : float
Input feature rate in Hz
win_len_smooth : int
Smoothing window length. For 0, no smoothing is applied.
downsamp_smooth : int
Downsampling factor. For 1, no downsampling is applied.
Returns
-------
f_feature_stat : np.ndarray
Downsampled & smoothed feature.
new_feature_rate : float
New feature rate after downsampling
"""
if win_len_smooth != 0 or downsamp_smooth != 1:
# hack to get the same results as on MATLAB
stat_window = np.hanning(win_len_smooth+2)[1:-1]
stat_window /= np.sum(stat_window)
# upfirdn filters and downsamples each column of f_stat_help
f_feature_stat = signal.upfirdn(h=stat_window, x=f_feature, up=1, down=downsamp_smooth)
seg_num = f_feature.shape[1]
stat_num = int(np.ceil(seg_num / downsamp_smooth))
cut = int(np.floor((win_len_smooth - 1) / (2 * downsamp_smooth)))
f_feature_stat = f_feature_stat[:, cut: stat_num + cut]
else:
f_feature_stat = f_feature
new_feature_rate = input_feature_rate / downsamp_smooth
return f_feature_stat, new_feature_rate
@jit(nopython=True)
def normalize_feature(feature: np.ndarray,
norm_ord: int,
threshold: float) -> np.ndarray:
"""Normalizes a feature sequence according to the l^norm_ord norm.
Parameters
----------
feature : np.ndarray
Input feature sequence of size d x N
d: dimensionality of feature vectors
N: number of feature vectors (time in frames)
norm_ord : int
Norm degree
threshold : float
If the norm falls below threshold for a feature vector, then the
normalized feature vector is set to be the normalized unit vector.
Returns
-------
f_normalized : np.ndarray
Normalized feature sequence
"""
# TODO rewrite in vectorized fashion
d, N = feature.shape
f_normalized = np.zeros((d, N))
# normalize the vectors according to the l^norm_ord norm
unit_vec = np.ones(d)
unit_vec = unit_vec / np.linalg.norm(unit_vec, norm_ord)
for k in range(N):
cur_norm = np.linalg.norm(feature[:, k], norm_ord)
if cur_norm < threshold:
f_normalized[:, k] = unit_vec
else:
f_normalized[:, k] = feature[:, k] / cur_norm
return f_normalized