Spaces:
Sleeping
Sleeping
shethjenil
commited on
Upload folder using huggingface_hub
Browse files- musc/dtw/__init__.py +0 -0
- musc/dtw/__pycache__/__init__.cpython-310.pyc +0 -0
- musc/dtw/__pycache__/__init__.cpython-39.pyc +0 -0
- musc/dtw/__pycache__/anchor.cpython-310.pyc +0 -0
- musc/dtw/__pycache__/anchor.cpython-39.pyc +0 -0
- musc/dtw/__pycache__/core.__C_to_DE-6.py310.1.nbc +0 -0
- musc/dtw/__pycache__/core.__C_to_DE-6.py310.2.nbc +0 -0
- musc/dtw/__pycache__/core.__C_to_DE-6.py310.3.nbc +0 -0
- musc/dtw/__pycache__/core.__C_to_DE-6.py310.nbi +0 -0
- musc/dtw/__pycache__/core.__E_to_warping_path-82.py310.1.nbc +0 -0
- musc/dtw/__pycache__/core.__E_to_warping_path-82.py310.2.nbc +0 -0
- musc/dtw/__pycache__/core.__E_to_warping_path-82.py310.3.nbc +0 -0
- musc/dtw/__pycache__/core.__E_to_warping_path-82.py310.nbi +0 -0
- musc/dtw/__pycache__/core.cpython-310.pyc +0 -0
- musc/dtw/__pycache__/core.cpython-39.pyc +0 -0
- musc/dtw/__pycache__/cost.cpython-310.pyc +0 -0
- musc/dtw/__pycache__/cost.cpython-39.pyc +0 -0
- musc/dtw/__pycache__/mrmsdtw.cpython-310.pyc +0 -0
- musc/dtw/__pycache__/mrmsdtw.cpython-39.pyc +0 -0
- musc/dtw/__pycache__/utils.cpython-310.pyc +0 -0
- musc/dtw/__pycache__/utils.cpython-39.pyc +0 -0
- musc/dtw/__pycache__/visualization.cpython-310.pyc +0 -0
- musc/dtw/__pycache__/visualization.cpython-39.pyc +0 -0
- musc/dtw/anchor.py +147 -0
- musc/dtw/core.py +205 -0
- musc/dtw/cost.py +80 -0
- musc/dtw/mrmsdtw.py +616 -0
- musc/dtw/utils.py +426 -0
- musc/dtw/visualization.py +216 -0
- musc/model.py +275 -0
musc/dtw/__init__.py
ADDED
File without changes
|
musc/dtw/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (169 Bytes). View file
|
|
musc/dtw/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (181 Bytes). View file
|
|
musc/dtw/__pycache__/anchor.cpython-310.pyc
ADDED
Binary file (4.23 kB). View file
|
|
musc/dtw/__pycache__/anchor.cpython-39.pyc
ADDED
Binary file (4.21 kB). View file
|
|
musc/dtw/__pycache__/core.__C_to_DE-6.py310.1.nbc
ADDED
Binary file (113 kB). View file
|
|
musc/dtw/__pycache__/core.__C_to_DE-6.py310.2.nbc
ADDED
Binary file (111 kB). View file
|
|
musc/dtw/__pycache__/core.__C_to_DE-6.py310.3.nbc
ADDED
Binary file (111 kB). View file
|
|
musc/dtw/__pycache__/core.__C_to_DE-6.py310.nbi
ADDED
Binary file (3.27 kB). View file
|
|
musc/dtw/__pycache__/core.__E_to_warping_path-82.py310.1.nbc
ADDED
Binary file (68 kB). View file
|
|
musc/dtw/__pycache__/core.__E_to_warping_path-82.py310.2.nbc
ADDED
Binary file (68 kB). View file
|
|
musc/dtw/__pycache__/core.__E_to_warping_path-82.py310.3.nbc
ADDED
Binary file (68 kB). View file
|
|
musc/dtw/__pycache__/core.__E_to_warping_path-82.py310.nbi
ADDED
Binary file (3.35 kB). View file
|
|
musc/dtw/__pycache__/core.cpython-310.pyc
ADDED
Binary file (5.45 kB). View file
|
|
musc/dtw/__pycache__/core.cpython-39.pyc
ADDED
Binary file (5.41 kB). View file
|
|
musc/dtw/__pycache__/cost.cpython-310.pyc
ADDED
Binary file (2.94 kB). View file
|
|
musc/dtw/__pycache__/cost.cpython-39.pyc
ADDED
Binary file (2.92 kB). View file
|
|
musc/dtw/__pycache__/mrmsdtw.cpython-310.pyc
ADDED
Binary file (16.3 kB). View file
|
|
musc/dtw/__pycache__/mrmsdtw.cpython-39.pyc
ADDED
Binary file (16.1 kB). View file
|
|
musc/dtw/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (12.3 kB). View file
|
|
musc/dtw/__pycache__/utils.cpython-39.pyc
ADDED
Binary file (12.3 kB). View file
|
|
musc/dtw/__pycache__/visualization.cpython-310.pyc
ADDED
Binary file (5.64 kB). View file
|
|
musc/dtw/__pycache__/visualization.cpython-39.pyc
ADDED
Binary file (5.58 kB). View file
|
|
musc/dtw/anchor.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numba import jit
|
2 |
+
import numpy as np
|
3 |
+
from typing import Tuple
|
4 |
+
|
5 |
+
|
6 |
+
def project_alignment_on_a_new_feature_rate(alignment: np.ndarray,
|
7 |
+
feature_rate_old: int,
|
8 |
+
feature_rate_new: int,
|
9 |
+
cost_matrix_size_old: tuple = (),
|
10 |
+
cost_matrix_size_new: tuple = ()) -> np.ndarray:
|
11 |
+
"""Projects an alignment computed for a cost matrix on a certain
|
12 |
+
feature resolution on a cost matrix having a different feature
|
13 |
+
resolution.
|
14 |
+
|
15 |
+
Parameters
|
16 |
+
----------
|
17 |
+
alignment : np.ndarray [shape=(2, N)]
|
18 |
+
Alignment matrix
|
19 |
+
|
20 |
+
feature_rate_old : int
|
21 |
+
Feature rate of the old cost matrix
|
22 |
+
|
23 |
+
feature_rate_new : int
|
24 |
+
Feature rate of the new cost matrix
|
25 |
+
|
26 |
+
cost_matrix_size_old : tuple
|
27 |
+
Size of the old cost matrix. Possibly needed to deal with border cases
|
28 |
+
|
29 |
+
cost_matrix_size_new : tuple
|
30 |
+
Size of the new cost matrix. Possibly needed to deal with border cases
|
31 |
+
|
32 |
+
Returns
|
33 |
+
-------
|
34 |
+
np.ndarray [shape=(2, N)]
|
35 |
+
Anchor sequence for the new cost matrix
|
36 |
+
"""
|
37 |
+
# Project the alignment on the new feature rate
|
38 |
+
fac = feature_rate_new / feature_rate_old
|
39 |
+
anchors = np.round(alignment * fac) + 1
|
40 |
+
|
41 |
+
# In case the sizes of the cost matrices are given explicitly and the
|
42 |
+
# alignment specifies to align the first and last elements, handle this case
|
43 |
+
# separately since this might cause problems in the general projection
|
44 |
+
# procedure.
|
45 |
+
if cost_matrix_size_old is not None and cost_matrix_size_new is not None:
|
46 |
+
if np.array_equal(alignment[:, 0], np.array([0, 0])):
|
47 |
+
anchors[:, 0] = np.array([1, 1])
|
48 |
+
|
49 |
+
if np.array_equal(alignment[:, -1], np.array(cost_matrix_size_old) - 1):
|
50 |
+
anchors[:, -1] = np.array(cost_matrix_size_new)
|
51 |
+
|
52 |
+
return anchors - 1
|
53 |
+
|
54 |
+
|
55 |
+
def derive_anchors_from_projected_alignment(projected_alignment: np.ndarray,
|
56 |
+
threshold: int) -> np.ndarray:
|
57 |
+
"""Derive anchors from a projected alignment such that the area of the rectangle
|
58 |
+
defined by two subsequent anchors a1 and a2 is below a given threshold.
|
59 |
+
|
60 |
+
Parameters
|
61 |
+
----------
|
62 |
+
projected_alignment : np.ndarray [shape=(2, N)]
|
63 |
+
Projected alignment array
|
64 |
+
|
65 |
+
threshold : int
|
66 |
+
Maximum area of the constraint rectangle
|
67 |
+
|
68 |
+
Returns
|
69 |
+
-------
|
70 |
+
anchors_res : np.ndarray [shape=(2, M)]
|
71 |
+
Resulting anchor sequence
|
72 |
+
"""
|
73 |
+
L = projected_alignment.shape[1]
|
74 |
+
|
75 |
+
a1 = np.array(projected_alignment[:, 0], copy=True).reshape(-1, 1)
|
76 |
+
a2 = np.array(projected_alignment[:, -1], copy=True).reshape(-1, 1)
|
77 |
+
|
78 |
+
if __compute_area(a1, a2) <= threshold:
|
79 |
+
anchors_res = np.concatenate([a1, a2], axis=1)
|
80 |
+
elif L > 2:
|
81 |
+
center = int(np.floor(L/2 + 1))
|
82 |
+
|
83 |
+
a1 = np.array(projected_alignment[:, 0], copy=True).reshape(-1, 1)
|
84 |
+
a2 = np.array(projected_alignment[:, center - 1], copy=True).reshape(-1, 1)
|
85 |
+
a3 = np.array(projected_alignment[:, -1], copy=True).reshape(-1, 1)
|
86 |
+
|
87 |
+
if __compute_area(a1, a2) > threshold:
|
88 |
+
anchors_1 = derive_anchors_from_projected_alignment(projected_alignment[:, 0:center], threshold)
|
89 |
+
else:
|
90 |
+
anchors_1 = np.concatenate([a1, a2], axis=1)
|
91 |
+
|
92 |
+
if __compute_area(a2, a3) > threshold:
|
93 |
+
anchors_2 = derive_anchors_from_projected_alignment(projected_alignment[:, center - 1:], threshold)
|
94 |
+
else:
|
95 |
+
anchors_2 = np.concatenate([a2, a3], axis=1)
|
96 |
+
|
97 |
+
anchors_res = np.concatenate([anchors_1, anchors_2[:, 1:]], axis=1)
|
98 |
+
else:
|
99 |
+
if __compute_area(a1, a2) > threshold:
|
100 |
+
print('Only two anchor points are given which do not fulfill the constraint.')
|
101 |
+
anchors_res = np.concatenate([a1, a2], axis=1)
|
102 |
+
|
103 |
+
return anchors_res
|
104 |
+
|
105 |
+
|
106 |
+
def derive_neighboring_anchors(warping_path: np.ndarray,
|
107 |
+
anchor_indices: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
108 |
+
"""Compute anchor points in the neighborhood of previous anchor points.
|
109 |
+
|
110 |
+
Parameters
|
111 |
+
----------
|
112 |
+
warping_path : np.ndarray [shape=(2, N)]
|
113 |
+
Warping path
|
114 |
+
|
115 |
+
anchor_indices : np.ndarray
|
116 |
+
Indices corresponding to the anchor points in the ``warping_path``
|
117 |
+
|
118 |
+
Returns
|
119 |
+
-------
|
120 |
+
neighboring_anchors : np.ndarray [shape=(2, N-1)]
|
121 |
+
Sequence of neighboring anchors
|
122 |
+
|
123 |
+
neighboring_anchor_indices : np.ndarray
|
124 |
+
Indices into ``warping path`` corresponding to ``neighboring_anchors``
|
125 |
+
"""
|
126 |
+
L = anchor_indices.shape[0]
|
127 |
+
neighboring_anchor_indices = np.zeros(L-1, dtype=int)
|
128 |
+
neighboring_anchors = np.zeros((2, L-1), dtype=int)
|
129 |
+
|
130 |
+
for k in range(1, L):
|
131 |
+
i1 = anchor_indices[k-1]
|
132 |
+
i2 = anchor_indices[k]
|
133 |
+
|
134 |
+
neighboring_anchor_indices[k-1] = i1 + np.floor((i2 - i1) / 2)
|
135 |
+
neighboring_anchors[:, k-1] = warping_path[:, neighboring_anchor_indices[k - 1]]
|
136 |
+
|
137 |
+
return neighboring_anchors, neighboring_anchor_indices
|
138 |
+
|
139 |
+
|
140 |
+
@jit(nopython=True)
|
141 |
+
def __compute_area(a: tuple,
|
142 |
+
b: tuple):
|
143 |
+
"""Computes the area between two points, given as tuples"""
|
144 |
+
return (b[0] - a[0] + 1) * (b[1] - a[1] + 1)
|
145 |
+
|
146 |
+
|
147 |
+
|
musc/dtw/core.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import librosa
|
2 |
+
from numba import jit
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
|
6 |
+
@jit(nopython=True, cache=True)
|
7 |
+
def __C_to_DE(C: np.ndarray = None,
|
8 |
+
dn: np.ndarray = np.array([1, 1, 0], np.int64),
|
9 |
+
dm: np.ndarray = np.array([1, 0, 1], np.int64),
|
10 |
+
dw: np.ndarray = np.array([1.0, 1.0, 1.0], np.float64),
|
11 |
+
sub_sequence: bool = False) -> (np.ndarray, np.ndarray):
|
12 |
+
"""This function computes the accumulated cost matrix D and the step index
|
13 |
+
matrix E.
|
14 |
+
|
15 |
+
Parameters
|
16 |
+
----------
|
17 |
+
C : np.ndarray (np.float32 / np.float64) [shape=(N, M)]
|
18 |
+
Cost matrix
|
19 |
+
|
20 |
+
dn : np.ndarray (np.int64) [shape=(1, S)]
|
21 |
+
Integer array defining valid steps (N direction of C), default: [1, 1, 0]
|
22 |
+
|
23 |
+
dm : np.ndarray (np.int64) [shape=(1, S)]
|
24 |
+
Integer array defining valid steps (M direction of C), default: [1, 0, 1]
|
25 |
+
|
26 |
+
dw : np.ndarray (np.float64) [shape=(1, S)]
|
27 |
+
Double array defining the weight of the each step, default: [1.0, 1.0, 1.0]
|
28 |
+
|
29 |
+
sub_sequence : bool
|
30 |
+
Set `True` for SubSequence DTW, default: False
|
31 |
+
|
32 |
+
Returns
|
33 |
+
-------
|
34 |
+
D : np.ndarray (np.float64) [shape=(N, M)]
|
35 |
+
Accumulated cost matrix of type double
|
36 |
+
|
37 |
+
E : np.ndarray (np.int64) [shape=(N, M)]
|
38 |
+
Step index matrix.
|
39 |
+
E[n, m] holds the index of the step take to determine the value of D[n, m].
|
40 |
+
If E[n, m] is zero, no valid step was possible.
|
41 |
+
NaNs in the cost matrix are preserved, invalid fields in the cost matrix are NaNs.
|
42 |
+
"""
|
43 |
+
if C is None:
|
44 |
+
raise ValueError('C must be a 2D numpy array.')
|
45 |
+
|
46 |
+
N, M = C.shape
|
47 |
+
S = dn.size
|
48 |
+
|
49 |
+
if S != dm.size or S != dw.size:
|
50 |
+
raise ValueError('The parameters dn,dm, and dw must be of equal length.')
|
51 |
+
|
52 |
+
# calc bounding box size of steps
|
53 |
+
sbbn = np.max(dn)
|
54 |
+
sbbm = np.max(dm)
|
55 |
+
|
56 |
+
# initialize E
|
57 |
+
E = np.zeros((N, M), np.int64) - 1
|
58 |
+
|
59 |
+
# initialize extended D matrix
|
60 |
+
D = np.ones((sbbn + N, sbbm + M), np.float64) * np.inf
|
61 |
+
|
62 |
+
if sub_sequence:
|
63 |
+
for m in range(M):
|
64 |
+
D[sbbn, sbbm + m] = C[0, m]
|
65 |
+
else:
|
66 |
+
D[sbbn, sbbm] = C[0, 0]
|
67 |
+
|
68 |
+
# accumulate
|
69 |
+
for m in range(sbbm, M + sbbm):
|
70 |
+
for n in range(sbbn, N + sbbn):
|
71 |
+
for s in range(S):
|
72 |
+
cost = D[n - dn[s], m - dm[s]] + C[n - sbbn, m - sbbm] * dw[s]
|
73 |
+
if cost < D[n, m]:
|
74 |
+
D[n, m] = cost
|
75 |
+
E[n - sbbn, m - sbbm] = s
|
76 |
+
|
77 |
+
D = D[sbbn: N + sbbn, sbbm: M + sbbm]
|
78 |
+
|
79 |
+
return D, E
|
80 |
+
|
81 |
+
|
82 |
+
@jit(nopython=True, cache=True)
|
83 |
+
def __E_to_warping_path(E: np.ndarray,
|
84 |
+
dn: np.ndarray = np.array([1, 1, 0], np.int64),
|
85 |
+
dm: np.ndarray = np.array([1, 0, 1], np.int64),
|
86 |
+
sub_sequence: bool = False,
|
87 |
+
end_index: int = -1) -> np.ndarray:
|
88 |
+
"""This function computes a warping path based on the provided matrix E
|
89 |
+
and the allowed steps.
|
90 |
+
|
91 |
+
Parameters
|
92 |
+
----------
|
93 |
+
E : np.ndarray (np.int64) [shape=(N, M)]
|
94 |
+
Step index matrix
|
95 |
+
|
96 |
+
dn : np.ndarray (np.int64) [shape=(1, S)]
|
97 |
+
Integer array defining valid steps (N direction of C), default: [1, 1, 0]
|
98 |
+
|
99 |
+
dm : np.ndarray (np.int64) [shape=(1, S)]
|
100 |
+
Integer array defining valid steps (M direction of C), default: [1, 0, 1]
|
101 |
+
|
102 |
+
sub_sequence : bool
|
103 |
+
Set `True` for SubSequence DTW, default: False
|
104 |
+
|
105 |
+
end_index : int
|
106 |
+
In case of SubSequence DTW
|
107 |
+
|
108 |
+
Returns
|
109 |
+
-------
|
110 |
+
warping_path : np.ndarray (np.int64) [shape=(2, M)]
|
111 |
+
Resulting optimal warping path
|
112 |
+
"""
|
113 |
+
N, M = E.shape
|
114 |
+
|
115 |
+
if not sub_sequence and end_index == -1:
|
116 |
+
end_index = M - 1
|
117 |
+
|
118 |
+
m = end_index
|
119 |
+
n = N - 1
|
120 |
+
|
121 |
+
warping_path = np.zeros((2, n + m + 1))
|
122 |
+
|
123 |
+
index = 0
|
124 |
+
|
125 |
+
def _loop(m, n, index):
|
126 |
+
warping_path[:, index] = np.array([n, m])
|
127 |
+
step_index = E[n, m]
|
128 |
+
m -= dm[step_index]
|
129 |
+
n -= dn[step_index]
|
130 |
+
index += 1
|
131 |
+
return m, n, index
|
132 |
+
|
133 |
+
if sub_sequence:
|
134 |
+
while n > 0:
|
135 |
+
m, n, index = _loop(m, n, index)
|
136 |
+
else:
|
137 |
+
while m > 0 or n > 0:
|
138 |
+
m, n, index = _loop(m, n, index)
|
139 |
+
|
140 |
+
warping_path[:, index] = np.array([n, m])
|
141 |
+
warping_path = warping_path[:, index::-1]
|
142 |
+
|
143 |
+
return warping_path
|
144 |
+
|
145 |
+
|
146 |
+
def compute_warping_path(C: np.ndarray,
|
147 |
+
step_sizes: np.ndarray = np.array([[1, 0], [0, 1], [1, 1]], np.int64),
|
148 |
+
step_weights: np.ndarray = np.array([1.0, 1.0, 1.0], np.float64),
|
149 |
+
implementation: str = 'synctoolbox'):
|
150 |
+
"""Applies DTW on cost matrix C.
|
151 |
+
|
152 |
+
Parameters
|
153 |
+
----------
|
154 |
+
C : np.ndarray (np.float32 / np.float64) [shape=(N, M)]
|
155 |
+
Cost matrix
|
156 |
+
|
157 |
+
step_sizes : np.ndarray (np.int64) [shape=(2, S)]
|
158 |
+
Array of step sizes
|
159 |
+
|
160 |
+
step_weights : np.ndarray (np.float64) [shape=(2, S)]
|
161 |
+
Array of step weights
|
162 |
+
|
163 |
+
implementation: str
|
164 |
+
Choose among ``synctoolbox`` and ``librosa``. (default: ``synctoolbox``)
|
165 |
+
|
166 |
+
Returns
|
167 |
+
-------
|
168 |
+
D : np.ndarray (np.float64) [shape=(N, M)]
|
169 |
+
Accumulated cost matrix
|
170 |
+
|
171 |
+
E : np.ndarray (np.int64) [shape=(N, M)]
|
172 |
+
Step index matrix
|
173 |
+
|
174 |
+
wp : np.ndarray (np.int64) [shape=(2, M)]
|
175 |
+
Warping path
|
176 |
+
"""
|
177 |
+
if implementation == 'librosa':
|
178 |
+
D, wp, E = librosa.sequence.dtw(C=C,
|
179 |
+
step_sizes_sigma=step_sizes,
|
180 |
+
weights_add=np.array([0, 0, 0]),
|
181 |
+
weights_mul=step_weights,
|
182 |
+
return_steps=True,
|
183 |
+
subseq=False)
|
184 |
+
wp = wp[::-1].T
|
185 |
+
|
186 |
+
elif implementation == 'synctoolbox':
|
187 |
+
dn = step_sizes[:, 0]
|
188 |
+
dm = step_sizes[:, 1]
|
189 |
+
|
190 |
+
D, E = __C_to_DE(C,
|
191 |
+
dn=dn,
|
192 |
+
dm=dm,
|
193 |
+
dw=step_weights,
|
194 |
+
sub_sequence=False)
|
195 |
+
|
196 |
+
wp = __E_to_warping_path(E=E,
|
197 |
+
dn=dn,
|
198 |
+
dm=dm,
|
199 |
+
sub_sequence=False)
|
200 |
+
|
201 |
+
else:
|
202 |
+
raise NotImplementedError(f'No implementation found called {implementation}')
|
203 |
+
|
204 |
+
return D, E, wp
|
205 |
+
|
musc/dtw/cost.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numba import jit
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.metrics.pairwise import euclidean_distances
|
4 |
+
|
5 |
+
#@jit(nopython=True)
|
6 |
+
def cosine_distance(f1, f2, cos_meas_max=2.0, cos_meas_min=1.0):
|
7 |
+
"""For all pairs of vectors f1' and f2' in f1 and f2, computes 1 - (f1.f2),
|
8 |
+
where '.' is the dot product, and rescales the results to lie in the
|
9 |
+
range [cos_meas_min, cos_meas_max].
|
10 |
+
Corresponds to regular cosine distance if f1' and f2' are normalized and
|
11 |
+
cos_meas_min==0.0 and cos_meas_max==1.0."""
|
12 |
+
return (1 - f1.T @ f2) * (cos_meas_max - cos_meas_min) + cos_meas_min
|
13 |
+
|
14 |
+
|
15 |
+
#@jit(nopython=True)
|
16 |
+
def euclidean_distance(f1, f2, l2_meas_max=1.0, l2_meas_min=0.0):
|
17 |
+
"""Computes euclidean distances between the vectors in f1 and f2, and
|
18 |
+
rescales the results to lie in the range [cos_meas_min, cos_meas_max]."""
|
19 |
+
|
20 |
+
#S1 = np.zeros((f1.shape[1], f2.shape[1]))
|
21 |
+
#for n in range(f2.shape[1]):
|
22 |
+
# S1[:, n] = np.sqrt(np.sum((f1.T - f2[:, n]) ** 2, axis=1))
|
23 |
+
S1 = euclidean_distances(f1.T, f2.T)
|
24 |
+
|
25 |
+
return S1 * (l2_meas_max - l2_meas_min) + l2_meas_min
|
26 |
+
|
27 |
+
|
28 |
+
def compute_high_res_cost_matrix(f_chroma1: np.ndarray,
|
29 |
+
f_chroma2: np.ndarray,
|
30 |
+
f_onset1: np.ndarray,
|
31 |
+
f_onset2: np.ndarray,
|
32 |
+
weights: np.ndarray = np.array([1.0, 1.0]),
|
33 |
+
cos_meas_min: float = 1.0,
|
34 |
+
cos_meas_max: float = 2.0,
|
35 |
+
l2_meas_min: float = 0.0,
|
36 |
+
l2_meas_max: float = 1.0):
|
37 |
+
"""Computes cost matrix of two sequences using two feature matrices
|
38 |
+
for each sequence. Cosine distance is used for the chroma sequences and
|
39 |
+
euclidean distance is used for the DLNCO sequences.
|
40 |
+
|
41 |
+
Parameters
|
42 |
+
----------
|
43 |
+
f_chroma1 : np.ndarray [shape=(12, N)]
|
44 |
+
Chroma feature matrix of the first sequence (assumed to be normalized).
|
45 |
+
|
46 |
+
f_chroma2 : np.ndarray [shape=(12, M)]
|
47 |
+
Chroma feature matrix of the second sequence (assumed to be normalized).
|
48 |
+
|
49 |
+
f_onset1 : np.ndarray [shape=(12, N)]
|
50 |
+
DLNCO feature matrix of the first sequence
|
51 |
+
|
52 |
+
f_onset2 : np.ndarray [shape=(12, M)]
|
53 |
+
DLNCO feature matrix of the second sequence
|
54 |
+
|
55 |
+
weights : np.ndarray [shape=[2,]]
|
56 |
+
Weights array for the high-resolution cost computation.
|
57 |
+
weights[0] * cosine_distance + weights[1] * euclidean_distance
|
58 |
+
|
59 |
+
cos_meas_min : float
|
60 |
+
Cosine distances are shifted to be at least ``cos_meas_min``
|
61 |
+
|
62 |
+
cos_meas_max : float
|
63 |
+
Cosine distances are scaled to be at most ``cos_meas_max``
|
64 |
+
|
65 |
+
l2_meas_min : float
|
66 |
+
Euclidean distances are shifted to be at least ``l2_meas_min``
|
67 |
+
|
68 |
+
l2_meas_max : float
|
69 |
+
Euclidean distances are scaled to be at most ``l2_meas_max``
|
70 |
+
|
71 |
+
Returns
|
72 |
+
-------
|
73 |
+
C: np.ndarray [shape=(N, M)]
|
74 |
+
Cost matrix
|
75 |
+
"""
|
76 |
+
cos_dis = cosine_distance(f_chroma1, f_chroma2, cos_meas_min=cos_meas_min, cos_meas_max=cos_meas_max)
|
77 |
+
euc_dis = euclidean_distance(f_onset1, f_onset2, l2_meas_min=l2_meas_min, l2_meas_max=l2_meas_max)
|
78 |
+
|
79 |
+
return weights[0] * cos_dis + weights[1] * euc_dis
|
80 |
+
|
musc/dtw/mrmsdtw.py
ADDED
@@ -0,0 +1,616 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numba import jit
|
2 |
+
import numpy as np
|
3 |
+
import time
|
4 |
+
from typing import List, Tuple, Optional
|
5 |
+
|
6 |
+
from .anchor import derive_anchors_from_projected_alignment, derive_neighboring_anchors, \
|
7 |
+
project_alignment_on_a_new_feature_rate
|
8 |
+
from .utils import build_path_from_warping_paths, compute_cost_matrices_between_anchors, smooth_downsample_feature, normalize_feature, compute_warping_paths_from_cost_matrices, find_anchor_indices_in_warping_path
|
9 |
+
from .visualization import sync_visualize_step1, sync_visualize_step2
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
def sync_via_mrmsdtw_with_anchors(f_chroma1: np.ndarray,
|
14 |
+
f_chroma2: np.ndarray,
|
15 |
+
f_onset1: np.ndarray = None,
|
16 |
+
f_onset2: np.ndarray = None,
|
17 |
+
input_feature_rate: float = 50,
|
18 |
+
step_sizes: np.ndarray = np.array([[1, 0], [0, 1], [1, 1]], np.int32),
|
19 |
+
step_weights: np.ndarray = np.array([1.0, 1.0, 1.0], np.float64),
|
20 |
+
threshold_rec: int = 10000,
|
21 |
+
win_len_smooth: np.ndarray = np.array([201, 101, 21, 1]),
|
22 |
+
downsamp_smooth: np.ndarray = np.array([50, 25, 5, 1]),
|
23 |
+
verbose: bool = False,
|
24 |
+
dtw_implementation: str = 'synctoolbox',
|
25 |
+
normalize_chroma: bool = True,
|
26 |
+
chroma_norm_ord: int = 2,
|
27 |
+
chroma_norm_threshold: float = 0.001,
|
28 |
+
visualization_title: str = "MrMsDTW result",
|
29 |
+
anchor_pairs: List[Tuple] = None,
|
30 |
+
linear_inp_idx: List[int] = [],
|
31 |
+
alpha=0.5) -> np.ndarray:
|
32 |
+
"""Compute memory-restricted multi-scale DTW (MrMsDTW) using chroma and (optionally) onset features.
|
33 |
+
MrMsDTW is performed on multiple levels that get progressively finer, with rectangular constraint
|
34 |
+
regions defined by the alignment found on the previous, coarser level.
|
35 |
+
If onset features are provided, these are used on the finest level in addition to chroma
|
36 |
+
to provide higher synchronization accuracy.
|
37 |
+
|
38 |
+
Parameters
|
39 |
+
----------
|
40 |
+
f_chroma1 : np.ndarray [shape=(12, N)]
|
41 |
+
Chroma feature matrix of the first sequence
|
42 |
+
|
43 |
+
f_chroma2 : np.ndarray [shape=(12, M)]
|
44 |
+
Chroma feature matrix of the second sequence
|
45 |
+
|
46 |
+
f_onset1 : np.ndarray [shape=(L, N)]
|
47 |
+
Onset feature matrix of the first sequence (optional, default: None)
|
48 |
+
|
49 |
+
f_onset2 : np.ndarray [shape=(L, M)]
|
50 |
+
Onset feature matrix of the second sequence (optional, default: None)
|
51 |
+
|
52 |
+
input_feature_rate: int
|
53 |
+
Input feature rate of the chroma features (default: 50)
|
54 |
+
|
55 |
+
step_sizes: np.ndarray
|
56 |
+
DTW step sizes (default: np.array([[1, 0], [0, 1], [1, 1]]))
|
57 |
+
|
58 |
+
step_weights: np.ndarray
|
59 |
+
DTW step weights (np.array([1.0, 1.0, 1.0]))
|
60 |
+
|
61 |
+
threshold_rec: int
|
62 |
+
Defines the maximum area that is spanned by the rectangle of two
|
63 |
+
consecutive elements in the alignment (default: 10000)
|
64 |
+
|
65 |
+
win_len_smooth : np.ndarray
|
66 |
+
Window lengths for chroma feature smoothing (default: np.array([201, 101, 21, 1]))
|
67 |
+
|
68 |
+
downsamp_smooth : np.ndarray
|
69 |
+
Downsampling factors (default: np.array([50, 25, 5, 1]))
|
70 |
+
|
71 |
+
verbose : bool
|
72 |
+
Set `True` for visualization (default: False)
|
73 |
+
|
74 |
+
dtw_implementation : str
|
75 |
+
DTW implementation, librosa or synctoolbox (default: synctoolbox)
|
76 |
+
|
77 |
+
normalize_chroma : bool
|
78 |
+
Set `True` to normalize input chroma features after each downsampling
|
79 |
+
and smoothing operation.
|
80 |
+
|
81 |
+
chroma_norm_ord: int
|
82 |
+
Order of chroma normalization, relevant if ``normalize_chroma`` is True.
|
83 |
+
(default: 2)
|
84 |
+
|
85 |
+
chroma_norm_threshold: float
|
86 |
+
If the norm falls below threshold for a feature vector, then the
|
87 |
+
normalized feature vector is set to be the unit vector. Relevant, if
|
88 |
+
``normalize_chroma`` is True (default: 0.001)
|
89 |
+
|
90 |
+
visualization_title : str
|
91 |
+
Title for the visualization plots. Only relevant if 'verbose' is True
|
92 |
+
(default: "MrMsDTW result")
|
93 |
+
|
94 |
+
anchor_pairs: List[Tuple]
|
95 |
+
Anchor pairs given in seconds. Note that
|
96 |
+
* (0, 0) and (<audio-len1>, <audio-len2>) are not allowed.
|
97 |
+
* Anchors must be monotonously increasing.
|
98 |
+
|
99 |
+
linear_inp_idx: List[int]
|
100 |
+
List of the indices of intervals created by anchor pairs, for which
|
101 |
+
MrMsDTW shouldn't be run, e.g., if the interval only involves silence.
|
102 |
+
|
103 |
+
0 ap1 ap2 ap3
|
104 |
+
| | | |
|
105 |
+
| idx0 | idx1 | idx2 | idx3 OR idx-1
|
106 |
+
| | | |
|
107 |
+
|
108 |
+
Note that index -1 corresponds to the last interval, which begins with
|
109 |
+
the last anchor pair until the end of the audio files.
|
110 |
+
|
111 |
+
alpha: float
|
112 |
+
Coefficient for the Chroma cost matrix in the finest scale of the MrMsDTW algorithm.
|
113 |
+
C = alpha * C_Chroma + (1 - alpha) * C_act (default: 0.5)
|
114 |
+
|
115 |
+
Returns
|
116 |
+
-------
|
117 |
+
wp : np.ndarray [shape=(2, T)]
|
118 |
+
Resulting warping path which indicates synchronized indices.
|
119 |
+
"""
|
120 |
+
if anchor_pairs is None:
|
121 |
+
wp = sync_via_mrmsdtw(f_chroma1=f_chroma1,
|
122 |
+
f_chroma2=f_chroma2,
|
123 |
+
f_onset1=f_onset1,
|
124 |
+
f_onset2=f_onset2,
|
125 |
+
input_feature_rate=input_feature_rate,
|
126 |
+
step_sizes=step_sizes,
|
127 |
+
step_weights=step_weights,
|
128 |
+
threshold_rec=threshold_rec,
|
129 |
+
win_len_smooth=win_len_smooth,
|
130 |
+
downsamp_smooth=downsamp_smooth,
|
131 |
+
verbose=verbose,
|
132 |
+
dtw_implementation=dtw_implementation,
|
133 |
+
normalize_chroma=normalize_chroma,
|
134 |
+
chroma_norm_ord=chroma_norm_ord,
|
135 |
+
chroma_norm_threshold=chroma_norm_threshold,
|
136 |
+
visualization_title=visualization_title,
|
137 |
+
alpha=alpha)
|
138 |
+
else:
|
139 |
+
# constant_intervals = [((0, x1), (0, y1), False),
|
140 |
+
# ((x1, x2), (y1, y2), True),
|
141 |
+
# ((x2, -1), (y2, -1), False)]
|
142 |
+
wp = None
|
143 |
+
|
144 |
+
if verbose:
|
145 |
+
print('Anchor points are given!')
|
146 |
+
|
147 |
+
__check_anchor_pairs(anchor_pairs, f_chroma1.shape[1], f_chroma2.shape[1], input_feature_rate)
|
148 |
+
|
149 |
+
# Add ending as the anchor point
|
150 |
+
anchor_pairs.append((-1, -1))
|
151 |
+
|
152 |
+
prev_a1 = 0
|
153 |
+
prev_a2 = 0
|
154 |
+
|
155 |
+
for idx, anchor_pair in enumerate(anchor_pairs):
|
156 |
+
cur_a1, cur_a2 = anchor_pair
|
157 |
+
|
158 |
+
# Split the features
|
159 |
+
f_chroma1_split, f_onset1_split, f_chroma2_split, f_onset2_split = __split_features(f_chroma1,
|
160 |
+
f_onset1,
|
161 |
+
f_chroma2,
|
162 |
+
f_onset2,
|
163 |
+
cur_a1,
|
164 |
+
cur_a2,
|
165 |
+
prev_a1,
|
166 |
+
prev_a2,
|
167 |
+
input_feature_rate)
|
168 |
+
|
169 |
+
if idx in linear_inp_idx or idx == len(anchor_pairs) - 1 and -1 in linear_inp_idx:
|
170 |
+
# Generate a diagonal warping path, if the algorithm is not supposed to executed.
|
171 |
+
# A typical scenario is the silence breaks which are enclosed by two anchor points.
|
172 |
+
if verbose:
|
173 |
+
print('A diagonal warping path is generated for the interval \n\t Feature sequence 1: %.2f - %.2f'
|
174 |
+
'\n\t Feature sequence 2: %.2f - %.2f\n' % (prev_a1, cur_a1, prev_a2, cur_a2))
|
175 |
+
wp_cur = __diagonal_warping_path(f_chroma1_split, f_chroma2_split)
|
176 |
+
|
177 |
+
else:
|
178 |
+
if verbose:
|
179 |
+
if cur_a1 != -1 and cur_a2 != -1:
|
180 |
+
print('MrMsDTW is applied for the interval \n\t Feature sequence 1: %.2f - %.2f'
|
181 |
+
'\n\t Feature sequence 2: %.2f - %.2f\n' % (prev_a1, cur_a1, prev_a2, cur_a2))
|
182 |
+
else:
|
183 |
+
print('MrMsDTW is applied for the interval \n\t Feature sequence 1: %.2f - end'
|
184 |
+
'\n\t Feature sequence 2: %.2f - end\n' % (prev_a1, prev_a2))
|
185 |
+
wp_cur = sync_via_mrmsdtw(f_chroma1=f_chroma1_split,
|
186 |
+
f_chroma2=f_chroma2_split,
|
187 |
+
f_onset1=f_onset1_split,
|
188 |
+
f_onset2=f_onset2_split,
|
189 |
+
input_feature_rate=input_feature_rate,
|
190 |
+
step_sizes=step_sizes,
|
191 |
+
step_weights=step_weights,
|
192 |
+
threshold_rec=threshold_rec,
|
193 |
+
win_len_smooth=win_len_smooth,
|
194 |
+
downsamp_smooth=downsamp_smooth,
|
195 |
+
verbose=verbose,
|
196 |
+
dtw_implementation=dtw_implementation,
|
197 |
+
normalize_chroma=normalize_chroma,
|
198 |
+
chroma_norm_ord=chroma_norm_ord,
|
199 |
+
chroma_norm_threshold=chroma_norm_threshold,
|
200 |
+
alpha=alpha)
|
201 |
+
|
202 |
+
if wp is None:
|
203 |
+
wp = np.array(wp_cur, copy=True)
|
204 |
+
|
205 |
+
# Concatenate warping paths
|
206 |
+
else:
|
207 |
+
wp = np.concatenate([wp, wp_cur + wp[:, -1].reshape(2, 1) + 1], axis=1)
|
208 |
+
|
209 |
+
prev_a1 = cur_a1
|
210 |
+
prev_a2 = cur_a2
|
211 |
+
|
212 |
+
anchor_pairs.pop()
|
213 |
+
|
214 |
+
return wp
|
215 |
+
|
216 |
+
|
217 |
+
def sync_via_mrmsdtw(f_chroma1: np.ndarray,
|
218 |
+
f_chroma2: np.ndarray,
|
219 |
+
f_onset1: np.ndarray = None,
|
220 |
+
f_onset2: np.ndarray = None,
|
221 |
+
input_feature_rate: float = 50,
|
222 |
+
step_sizes: np.ndarray = np.array([[1, 0], [0, 1], [1, 1]], np.int32),
|
223 |
+
step_weights: np.ndarray = np.array([1.0, 1.0, 1.0], np.float64),
|
224 |
+
threshold_rec: int = 10000,
|
225 |
+
win_len_smooth: np.ndarray = np.array([201, 101, 21, 1]),
|
226 |
+
downsamp_smooth: np.ndarray = np.array([50, 25, 5, 1]),
|
227 |
+
verbose: bool = False,
|
228 |
+
dtw_implementation: str = 'synctoolbox',
|
229 |
+
normalize_chroma: bool = True,
|
230 |
+
chroma_norm_ord: int = 2,
|
231 |
+
chroma_norm_threshold: float = 0.001,
|
232 |
+
visualization_title: str = "MrMsDTW result",
|
233 |
+
alpha=0.5) -> np.ndarray:
|
234 |
+
"""Compute memory-restricted multi-scale DTW (MrMsDTW) using chroma and (optionally) onset features.
|
235 |
+
MrMsDTW is performed on multiple levels that get progressively finer, with rectangular constraint
|
236 |
+
regions defined by the alignment found on the previous, coarser level.
|
237 |
+
If onset features are provided, these are used on the finest level in addition to chroma
|
238 |
+
to provide higher synchronization accuracy.
|
239 |
+
|
240 |
+
Parameters
|
241 |
+
----------
|
242 |
+
f_chroma1 : np.ndarray [shape=(12, N)]
|
243 |
+
Chroma feature matrix of the first sequence
|
244 |
+
|
245 |
+
f_chroma2 : np.ndarray [shape=(12, M)]
|
246 |
+
Chroma feature matrix of the second sequence
|
247 |
+
|
248 |
+
f_onset1 : np.ndarray [shape=(L, N)]
|
249 |
+
Onset feature matrix of the first sequence (optional, default: None)
|
250 |
+
|
251 |
+
f_onset2 : np.ndarray [shape=(L, M)]
|
252 |
+
Onset feature matrix of the second sequence (optional, default: None)
|
253 |
+
|
254 |
+
input_feature_rate: int
|
255 |
+
Input feature rate of the chroma features (default: 50)
|
256 |
+
|
257 |
+
step_sizes: np.ndarray
|
258 |
+
DTW step sizes (default: np.array([[1, 0], [0, 1], [1, 1]]))
|
259 |
+
|
260 |
+
step_weights: np.ndarray
|
261 |
+
DTW step weights (np.array([1.0, 1.0, 1.0]))
|
262 |
+
|
263 |
+
threshold_rec: int
|
264 |
+
Defines the maximum area that is spanned by the rectangle of two
|
265 |
+
consecutive elements in the alignment (default: 10000)
|
266 |
+
|
267 |
+
win_len_smooth : np.ndarray
|
268 |
+
Window lengths for chroma feature smoothing (default: np.array([201, 101, 21, 1]))
|
269 |
+
|
270 |
+
downsamp_smooth : np.ndarray
|
271 |
+
Downsampling factors (default: np.array([50, 25, 5, 1]))
|
272 |
+
|
273 |
+
verbose : bool
|
274 |
+
Set `True` for visualization (default: False)
|
275 |
+
|
276 |
+
dtw_implementation : str
|
277 |
+
DTW implementation, librosa or synctoolbox (default: synctoolbox)
|
278 |
+
|
279 |
+
normalize_chroma : bool
|
280 |
+
Set `True` to normalize input chroma features after each downsampling
|
281 |
+
and smoothing operation.
|
282 |
+
|
283 |
+
chroma_norm_ord: int
|
284 |
+
Order of chroma normalization, relevant if ``normalize_chroma`` is True.
|
285 |
+
(default: 2)
|
286 |
+
|
287 |
+
chroma_norm_threshold: float
|
288 |
+
If the norm falls below threshold for a feature vector, then the
|
289 |
+
normalized feature vector is set to be the unit vector. Relevant, if
|
290 |
+
``normalize_chroma`` is True (default: 0.001)
|
291 |
+
|
292 |
+
visualization_title : str
|
293 |
+
Title for the visualization plots. Only relevant if 'verbose' is True
|
294 |
+
(default: "MrMsDTW result")
|
295 |
+
|
296 |
+
alpha: float
|
297 |
+
Coefficient for the Chroma cost matrix in the finest scale of the MrMsDTW algorithm.
|
298 |
+
C = alpha * C_Chroma + (1 - alpha) * C_act (default: 0.5)
|
299 |
+
|
300 |
+
Returns
|
301 |
+
-------
|
302 |
+
alignment: np.ndarray [shape=(2, T)]
|
303 |
+
Resulting warping path which indicates synchronized indices.
|
304 |
+
"""
|
305 |
+
# If onset features are given as input, high resolution MrMsDTW is activated.
|
306 |
+
high_res = False
|
307 |
+
if f_onset1 is not None and f_onset2 is not None:
|
308 |
+
high_res = True
|
309 |
+
|
310 |
+
if high_res and (f_chroma1.shape[1] != f_onset1.shape[1] or f_chroma2.shape[1] != f_onset2.shape[1]):
|
311 |
+
raise ValueError('Chroma and onset features must be of the same length.')
|
312 |
+
|
313 |
+
if downsamp_smooth[-1] != 1 or win_len_smooth[-1] != 1:
|
314 |
+
raise ValueError('The downsampling factor of the last iteration must be equal to 1, i.e.'
|
315 |
+
'at the last iteration, it is computed at the input feature rate!')
|
316 |
+
|
317 |
+
num_iterations = win_len_smooth.shape[0]
|
318 |
+
cost_matrix_size_old = tuple()
|
319 |
+
feature_rate_old = input_feature_rate / downsamp_smooth[0]
|
320 |
+
alignment = None
|
321 |
+
total_computation_time = 0.0
|
322 |
+
|
323 |
+
# If the area is less than the threshold_rec, don't apply the multiscale DTW.
|
324 |
+
it = (num_iterations - 1) if __compute_area(f_chroma1, f_chroma2) < threshold_rec else 0
|
325 |
+
|
326 |
+
while it < num_iterations:
|
327 |
+
tic1 = time.perf_counter()
|
328 |
+
|
329 |
+
# Smooth and downsample given raw features
|
330 |
+
f_chroma1_cur, _ = smooth_downsample_feature(f_chroma1,
|
331 |
+
input_feature_rate=input_feature_rate,
|
332 |
+
win_len_smooth=win_len_smooth[it],
|
333 |
+
downsamp_smooth=downsamp_smooth[it])
|
334 |
+
|
335 |
+
f_chroma2_cur, feature_rate_new = smooth_downsample_feature(f_chroma2,
|
336 |
+
input_feature_rate=input_feature_rate,
|
337 |
+
win_len_smooth=win_len_smooth[it],
|
338 |
+
downsamp_smooth=downsamp_smooth[it])
|
339 |
+
|
340 |
+
if normalize_chroma:
|
341 |
+
f_chroma1_cur = normalize_feature(f_chroma1_cur,
|
342 |
+
norm_ord=chroma_norm_ord,
|
343 |
+
threshold=chroma_norm_threshold)
|
344 |
+
|
345 |
+
f_chroma2_cur = normalize_feature(f_chroma2_cur,
|
346 |
+
norm_ord=chroma_norm_ord,
|
347 |
+
threshold=chroma_norm_threshold)
|
348 |
+
|
349 |
+
# Project path onto new resolution
|
350 |
+
cost_matrix_size_new = (f_chroma1_cur.shape[1], f_chroma2_cur.shape[1])
|
351 |
+
|
352 |
+
if alignment is None:
|
353 |
+
# Initialize the alignment with the start and end frames of the feature sequence
|
354 |
+
anchors = np.array([[0, f_chroma1_cur.shape[1] - 1], [0, f_chroma2_cur.shape[1] - 1]])
|
355 |
+
|
356 |
+
else:
|
357 |
+
projected_alignment = project_alignment_on_a_new_feature_rate(alignment=alignment,
|
358 |
+
feature_rate_old=feature_rate_old,
|
359 |
+
feature_rate_new=feature_rate_new,
|
360 |
+
cost_matrix_size_old=cost_matrix_size_old,
|
361 |
+
cost_matrix_size_new=cost_matrix_size_new)
|
362 |
+
|
363 |
+
anchors = derive_anchors_from_projected_alignment(projected_alignment=projected_alignment,
|
364 |
+
threshold=threshold_rec)
|
365 |
+
|
366 |
+
# Cost matrix and warping path computation
|
367 |
+
if high_res and it == num_iterations - 1:
|
368 |
+
# Compute cost considering chroma and pitch onset features and alignment only in the last iteration,
|
369 |
+
# where the features are at the finest level.
|
370 |
+
cost_matrices_step1 = compute_cost_matrices_between_anchors(f_chroma1=f_chroma1_cur,
|
371 |
+
f_chroma2=f_chroma2_cur,
|
372 |
+
f_onset1=f_onset1,
|
373 |
+
f_onset2=f_onset2,
|
374 |
+
anchors=anchors,
|
375 |
+
alpha=alpha)
|
376 |
+
|
377 |
+
else:
|
378 |
+
cost_matrices_step1 = compute_cost_matrices_between_anchors(f_chroma1=f_chroma1_cur,
|
379 |
+
f_chroma2=f_chroma2_cur,
|
380 |
+
anchors=anchors,
|
381 |
+
alpha=alpha)
|
382 |
+
|
383 |
+
wp_list = compute_warping_paths_from_cost_matrices(cost_matrices_step1,
|
384 |
+
step_sizes=step_sizes,
|
385 |
+
step_weights=step_weights,
|
386 |
+
implementation=dtw_implementation)
|
387 |
+
|
388 |
+
# Concatenate warping paths
|
389 |
+
wp = build_path_from_warping_paths(warping_paths=wp_list,
|
390 |
+
anchors=anchors)
|
391 |
+
|
392 |
+
anchors_step1 = None
|
393 |
+
wp_step1 = None
|
394 |
+
num_rows_step1 = 0
|
395 |
+
num_cols_step1 = 0
|
396 |
+
ax = None
|
397 |
+
|
398 |
+
toc1 = time.perf_counter()
|
399 |
+
if verbose and cost_matrices_step1 is not None:
|
400 |
+
anchors_step1 = np.array(anchors, copy=True)
|
401 |
+
wp_step1 = np.array(wp, copy=True)
|
402 |
+
num_rows_step1, num_cols_step1 = np.sum(np.array([dtw_mat.shape for dtw_mat in cost_matrices_step1], int),
|
403 |
+
axis=0)
|
404 |
+
fig, ax = sync_visualize_step1(cost_matrices_step1,
|
405 |
+
num_rows_step1,
|
406 |
+
num_cols_step1,
|
407 |
+
anchors,
|
408 |
+
wp)
|
409 |
+
tic2 = time.perf_counter()
|
410 |
+
|
411 |
+
# Compute neighboring anchors and refine alignment using local path between neighboring anchors
|
412 |
+
anchor_indices_in_warping_path = find_anchor_indices_in_warping_path(wp, anchors=anchors)
|
413 |
+
|
414 |
+
# Compute neighboring anchors for refinement
|
415 |
+
neighboring_anchors, neighboring_anchor_indices = \
|
416 |
+
derive_neighboring_anchors(wp, anchor_indices=anchor_indices_in_warping_path)
|
417 |
+
|
418 |
+
if neighboring_anchor_indices.shape[0] > 1 \
|
419 |
+
and it == num_iterations - 1 and high_res:
|
420 |
+
cost_matrices_step2 = compute_cost_matrices_between_anchors(f_chroma1=f_chroma1_cur,
|
421 |
+
f_chroma2=f_chroma2_cur,
|
422 |
+
f_onset1=f_onset1,
|
423 |
+
f_onset2=f_onset2,
|
424 |
+
anchors=neighboring_anchors,
|
425 |
+
alpha=alpha)
|
426 |
+
|
427 |
+
else:
|
428 |
+
cost_matrices_step2 = compute_cost_matrices_between_anchors(f_chroma1=f_chroma1_cur,
|
429 |
+
f_chroma2=f_chroma2_cur,
|
430 |
+
anchors=neighboring_anchors,
|
431 |
+
alpha=alpha)
|
432 |
+
|
433 |
+
wp_list_refine = compute_warping_paths_from_cost_matrices(cost_matrices=cost_matrices_step2,
|
434 |
+
step_sizes=step_sizes,
|
435 |
+
step_weights=step_weights,
|
436 |
+
implementation=dtw_implementation)
|
437 |
+
|
438 |
+
wp = __refine_wp(wp, anchors, wp_list_refine, neighboring_anchors, neighboring_anchor_indices)
|
439 |
+
|
440 |
+
toc2 = time.perf_counter()
|
441 |
+
computation_time_it = toc2 - tic2 + toc1 - tic1
|
442 |
+
total_computation_time += computation_time_it
|
443 |
+
|
444 |
+
alignment = wp
|
445 |
+
feature_rate_old = feature_rate_new
|
446 |
+
cost_matrix_size_old = cost_matrix_size_new
|
447 |
+
|
448 |
+
if verbose and cost_matrices_step2 is not None:
|
449 |
+
sync_visualize_step2(ax,
|
450 |
+
cost_matrices_step2,
|
451 |
+
wp,
|
452 |
+
wp_step1,
|
453 |
+
num_rows_step1,
|
454 |
+
num_cols_step1,
|
455 |
+
anchors_step1,
|
456 |
+
neighboring_anchors,
|
457 |
+
plot_title=f"{visualization_title} - Level {it + 1}")
|
458 |
+
print('Level {} computation time: {:.2f} seconds'.format(it, computation_time_it))
|
459 |
+
|
460 |
+
it += 1
|
461 |
+
|
462 |
+
if verbose:
|
463 |
+
print('Computation time of MrMsDTW: {:.2f} seconds'.format(total_computation_time))
|
464 |
+
|
465 |
+
return alignment
|
466 |
+
|
467 |
+
|
468 |
+
def __diagonal_warping_path(f1: np.ndarray,
|
469 |
+
f2: np.ndarray) -> np.ndarray:
|
470 |
+
"""Generates a diagonal warping path given two feature sequences.
|
471 |
+
|
472 |
+
Parameters
|
473 |
+
----------
|
474 |
+
f1: np.ndarray [shape=(_, N)]
|
475 |
+
First feature sequence
|
476 |
+
|
477 |
+
f2: np.ndarray [shape=(_, M)]
|
478 |
+
Second feature sequence
|
479 |
+
|
480 |
+
Returns
|
481 |
+
-------
|
482 |
+
np.ndarray: Diagonal warping path [shape=(2, T)]
|
483 |
+
"""
|
484 |
+
max_size = np.maximum(f1.shape[1], f2.shape[1])
|
485 |
+
min_size = np.minimum(f1.shape[1], f2.shape[1])
|
486 |
+
|
487 |
+
if min_size == 1:
|
488 |
+
return np.array([max_size - 1, 0]).reshape(-1, 1)
|
489 |
+
|
490 |
+
elif max_size == f1.shape[1]:
|
491 |
+
return np.array([np.round(np.linspace(0, max_size - 1, min_size)), np.linspace(0, min_size - 1, min_size)])
|
492 |
+
|
493 |
+
else:
|
494 |
+
return np.array([np.linspace(0, min_size-1, min_size), np.round(np.linspace(0, max_size - 1, min_size))])
|
495 |
+
|
496 |
+
|
497 |
+
@jit(nopython=True)
|
498 |
+
def __compute_area(f1, f2):
|
499 |
+
"""Computes the area of the cost matrix given two feature sequences
|
500 |
+
|
501 |
+
Parameters
|
502 |
+
----------
|
503 |
+
f1: np.ndarray
|
504 |
+
First feature sequence
|
505 |
+
|
506 |
+
f2: np.ndarray
|
507 |
+
Second feature sequence
|
508 |
+
|
509 |
+
Returns
|
510 |
+
-------
|
511 |
+
int: Area of the cost matrix
|
512 |
+
"""
|
513 |
+
return f1.shape[1] * f2.shape[1]
|
514 |
+
|
515 |
+
|
516 |
+
def __split_features(f_chroma1: np.ndarray,
|
517 |
+
f_onset1: np.ndarray,
|
518 |
+
f_chroma2: np.ndarray,
|
519 |
+
f_onset2: np.ndarray,
|
520 |
+
cur_a1: float,
|
521 |
+
cur_a2: float,
|
522 |
+
prev_a1: float,
|
523 |
+
prev_a2: float,
|
524 |
+
feature_rate: int) -> Tuple[np.ndarray, Optional[np.ndarray], np.ndarray, Optional[np.ndarray]]:
|
525 |
+
|
526 |
+
if cur_a1 == -1:
|
527 |
+
f_chroma1_split = f_chroma1[:, int(prev_a1 * feature_rate):]
|
528 |
+
if f_onset1 is not None:
|
529 |
+
f_onset1_split = f_onset1[:, int(prev_a1 * feature_rate):]
|
530 |
+
else:
|
531 |
+
f_onset1_split = None
|
532 |
+
|
533 |
+
else:
|
534 |
+
# Split the features
|
535 |
+
f_chroma1_split = f_chroma1[:, int(prev_a1 * feature_rate):int(cur_a1 * feature_rate)]
|
536 |
+
if f_onset1 is not None:
|
537 |
+
f_onset1_split = f_onset1[:, int(prev_a1 * feature_rate):int(cur_a1 * feature_rate)]
|
538 |
+
else:
|
539 |
+
f_onset1_split = None
|
540 |
+
|
541 |
+
if cur_a2 == -1:
|
542 |
+
f_chroma2_split = f_chroma2[:, int(prev_a2 * feature_rate):]
|
543 |
+
if f_onset2 is not None:
|
544 |
+
f_onset2_split = f_onset2[:, int(prev_a2 * feature_rate):]
|
545 |
+
else:
|
546 |
+
f_onset2_split = None
|
547 |
+
|
548 |
+
else:
|
549 |
+
f_chroma2_split = f_chroma2[:, int(prev_a2 * feature_rate):int(cur_a2 * feature_rate)]
|
550 |
+
if f_onset2 is not None:
|
551 |
+
f_onset2_split = f_onset2[:, int(prev_a2 * feature_rate):int(cur_a2 * feature_rate)]
|
552 |
+
else:
|
553 |
+
f_onset2_split = None
|
554 |
+
|
555 |
+
return f_chroma1_split, f_onset1_split, f_chroma2_split, f_onset2_split
|
556 |
+
|
557 |
+
|
558 |
+
def __refine_wp(wp: np.ndarray,
|
559 |
+
anchors: np.ndarray,
|
560 |
+
wp_list_refine: List,
|
561 |
+
neighboring_anchors: np.ndarray,
|
562 |
+
neighboring_anchor_indices: np.ndarray) -> np.ndarray:
|
563 |
+
wp_length = wp[:, neighboring_anchor_indices[-1]:].shape[1]
|
564 |
+
last_list = wp[:, neighboring_anchor_indices[-1]:] - np.tile(
|
565 |
+
wp[:, neighboring_anchor_indices[-1]].reshape(-1, 1), wp_length)
|
566 |
+
wp_list_tmp = [wp[:, :neighboring_anchor_indices[0] + 1]] + wp_list_refine + [last_list]
|
567 |
+
A_tmp = np.concatenate([anchors[:, 0].reshape(-1, 1), neighboring_anchors, anchors[:, -1].reshape(-1, 1)],
|
568 |
+
axis=1)
|
569 |
+
wp_res = build_path_from_warping_paths(warping_paths=wp_list_tmp,
|
570 |
+
anchors=A_tmp)
|
571 |
+
|
572 |
+
return wp_res
|
573 |
+
|
574 |
+
|
575 |
+
def __check_anchor_pairs(anchor_pairs: List,
|
576 |
+
f_len1: int,
|
577 |
+
f_len2: int,
|
578 |
+
feature_rate: int):
|
579 |
+
"""Ensures that the anchors satisfy the conditions
|
580 |
+
|
581 |
+
Parameters
|
582 |
+
----------
|
583 |
+
anchor_pairs: List[Tuple]
|
584 |
+
List of anchor pairs
|
585 |
+
|
586 |
+
f_len1: int
|
587 |
+
Length of the first feature sequence
|
588 |
+
|
589 |
+
f_len2: int
|
590 |
+
Length of the second feature sequence
|
591 |
+
|
592 |
+
feature_rate: int
|
593 |
+
Input feature rate of the features
|
594 |
+
"""
|
595 |
+
prev_a1 = 0
|
596 |
+
prev_a2 = 0
|
597 |
+
for anchor_pair in anchor_pairs:
|
598 |
+
a1, a2 = anchor_pair
|
599 |
+
|
600 |
+
if a1 <= 0 or a2 <= 0:
|
601 |
+
raise ValueError('Starting point must be a positive number!')
|
602 |
+
|
603 |
+
if a1 > f_len1 / feature_rate or a2 > f_len2 / feature_rate:
|
604 |
+
raise ValueError('Anchor points cannot be greater than the length of the input audio files!')
|
605 |
+
|
606 |
+
if a1 == f_len1 and a2 == f_len2:
|
607 |
+
raise ValueError('Both anchor points cannot be equal to the length of the audio files.')
|
608 |
+
|
609 |
+
if a1 == prev_a1 and a2 == prev_a2:
|
610 |
+
raise ValueError('Duplicate anchor pairs are not allowed!')
|
611 |
+
|
612 |
+
if a1 < prev_a1 or a2 < prev_a2:
|
613 |
+
raise ValueError('Anchor points must be monotonously increasing.')
|
614 |
+
|
615 |
+
prev_a1 = a1
|
616 |
+
prev_a2 = a2
|
musc/dtw/utils.py
ADDED
@@ -0,0 +1,426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from typing import List
|
3 |
+
from numba import jit
|
4 |
+
import numpy as np
|
5 |
+
from scipy import signal
|
6 |
+
from typing import Tuple
|
7 |
+
|
8 |
+
|
9 |
+
from .core import compute_warping_path
|
10 |
+
from .cost import *
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
def compute_optimal_chroma_shift(f_chroma1: np.ndarray,
|
15 |
+
f_chroma2: np.ndarray,
|
16 |
+
chroma_transpositions: np.ndarray = np.arange(0, 12),
|
17 |
+
step_sizes: np.ndarray = np.array([[1, 0], [0, 1], [1, 1]], int),
|
18 |
+
step_weights: np.ndarray = np.array([1.0, 1.0, 1.0], np.float64)) -> int:
|
19 |
+
"""Computes the optimal chroma shift which minimizes the DTW cost.
|
20 |
+
|
21 |
+
Parameters
|
22 |
+
----------
|
23 |
+
f_chroma1 : np.ndarray [shape=(d_chroma, N_chroma)]
|
24 |
+
First chroma vector
|
25 |
+
|
26 |
+
f_chroma2 : np.ndarray [shape=(d_chroma, N_chroma)]
|
27 |
+
Second chroma vector
|
28 |
+
|
29 |
+
step_sizes : np.ndarray
|
30 |
+
DTW step sizes (default: np.array([[1, 0], [0, 1], [1, 1]]))
|
31 |
+
|
32 |
+
step_weights : np.ndarray
|
33 |
+
DTW step weights (default: np.array([1.0, 1.0, 1.0]))
|
34 |
+
|
35 |
+
chroma_transpositions : np.ndarray
|
36 |
+
Array of chroma shifts (default: np.arange(0, 11))
|
37 |
+
|
38 |
+
Returns
|
39 |
+
-------
|
40 |
+
opt_chroma_shift : int
|
41 |
+
Optimal chroma shift which minimizes the DTW cost.
|
42 |
+
"""
|
43 |
+
if f_chroma2.shape[1] >= 9000 or f_chroma1.shape[1] >= 9000:
|
44 |
+
print("Warning: You are attempting to find the optimal chroma shift on sequences of length >= 9000. "
|
45 |
+
"This involves full DTW computation. You'll probably want to smooth and downsample your sequences to a"
|
46 |
+
" lower feature resolution before doing this.")
|
47 |
+
opt_chroma_shift = 0
|
48 |
+
dtw_cost = np.inf
|
49 |
+
for chroma_shift in chroma_transpositions:
|
50 |
+
cost_matrix_tmp = cosine_distance(f_chroma1, shift_chroma_vectors(f_chroma2, chroma_shift))
|
51 |
+
D, _, _ = compute_warping_path(cost_matrix_tmp, step_sizes=step_sizes, step_weights=step_weights)
|
52 |
+
if D[-1, -1] < dtw_cost:
|
53 |
+
dtw_cost = D[-1, -1]
|
54 |
+
opt_chroma_shift = chroma_shift
|
55 |
+
|
56 |
+
return opt_chroma_shift
|
57 |
+
|
58 |
+
|
59 |
+
def compute_warping_paths_from_cost_matrices(cost_matrices: List,
|
60 |
+
step_sizes: np.array = np.array([[1, 0], [0, 1], [1, 1]], int),
|
61 |
+
step_weights: np.array = np.array([1.0, 1.0, 1.0], np.float64),
|
62 |
+
implementation: str = 'synctoolbox') -> List:
|
63 |
+
"""Computes a path via DTW on each matrix in cost_matrices
|
64 |
+
|
65 |
+
Parameters
|
66 |
+
----------
|
67 |
+
cost_matrices : list
|
68 |
+
List of cost matrices
|
69 |
+
|
70 |
+
step_sizes : np.ndarray
|
71 |
+
DTW step sizes (default: np.array([[1, 0], [0, 1], [1, 1]]))
|
72 |
+
|
73 |
+
step_weights : np.ndarray
|
74 |
+
DTW step weights (default: np.array([1.0, 1.0, 1.0]))
|
75 |
+
|
76 |
+
implementation : str
|
77 |
+
Choose among 'synctoolbox' and 'librosa' (default: 'synctoolbox')
|
78 |
+
|
79 |
+
Returns
|
80 |
+
-------
|
81 |
+
wp_list : list
|
82 |
+
List of warping paths
|
83 |
+
"""
|
84 |
+
return [compute_warping_path(C=C,
|
85 |
+
step_sizes=step_sizes,
|
86 |
+
step_weights=step_weights,
|
87 |
+
implementation=implementation)[2] for C in cost_matrices]
|
88 |
+
|
89 |
+
|
90 |
+
def compute_cost_matrices_between_anchors(f_chroma1: np.ndarray,
|
91 |
+
f_chroma2: np.ndarray,
|
92 |
+
anchors: np.ndarray,
|
93 |
+
f_onset1: np.ndarray = None,
|
94 |
+
f_onset2: np.ndarray = None,
|
95 |
+
alpha: float = 0.5) -> List:
|
96 |
+
"""Computes cost matrices for the given features between subsequent
|
97 |
+
pairs of anchors points.
|
98 |
+
|
99 |
+
Parameters
|
100 |
+
----------
|
101 |
+
f_chroma1 : np.ndarray [shape=(12, N)]
|
102 |
+
Chroma feature matrix of the first sequence
|
103 |
+
|
104 |
+
f_chroma2 : np.ndarray [shape=(12, M)]
|
105 |
+
Chroma feature matrix of the second sequence
|
106 |
+
|
107 |
+
anchors : np.ndarray [shape=(2, R)]
|
108 |
+
Anchor sequence
|
109 |
+
|
110 |
+
f_onset1 : np.ndarray [shape=(L, N)]
|
111 |
+
Onset feature matrix of the first sequence
|
112 |
+
|
113 |
+
f_onset2 : np.ndarray [shape=(L, M)]
|
114 |
+
Onset feature matrix of the second sequence
|
115 |
+
|
116 |
+
alpha: float
|
117 |
+
Alpha parameter to weight the cost functions.
|
118 |
+
|
119 |
+
Returns
|
120 |
+
-------
|
121 |
+
cost_matrices: list
|
122 |
+
List containing cost matrices
|
123 |
+
"""
|
124 |
+
high_res = False
|
125 |
+
if f_onset1 is not None and f_onset2 is not None:
|
126 |
+
high_res = True
|
127 |
+
|
128 |
+
cost_matrices = list()
|
129 |
+
for k in range(anchors.shape[1] - 1):
|
130 |
+
a1 = np.array(anchors[:, k].astype(int), copy=True)
|
131 |
+
a2 = np.array(anchors[:, k + 1].astype(int), copy=True)
|
132 |
+
|
133 |
+
if high_res:
|
134 |
+
cost_matrices.append(compute_high_res_cost_matrix(f_chroma1[:, a1[0]: a2[0] + 1],
|
135 |
+
f_chroma2[:, a1[1]: a2[1] + 1],
|
136 |
+
f_onset1[:, a1[0]: a2[0] + 1],
|
137 |
+
f_onset2[:, a1[1]: a2[1] + 1],
|
138 |
+
weights=np.array([alpha, 1-alpha])))
|
139 |
+
else:
|
140 |
+
cost_matrices.append(cosine_distance(f_chroma1[:, a1[0]: a2[0] + 1],
|
141 |
+
f_chroma2[:, a1[1]: a2[1] + 1]))
|
142 |
+
return cost_matrices
|
143 |
+
|
144 |
+
|
145 |
+
def build_path_from_warping_paths(warping_paths: List,
|
146 |
+
anchors: np.ndarray = None) -> np.ndarray:
|
147 |
+
"""The function builds a path from a given list of warping paths
|
148 |
+
and the anchors used to obtain these paths. The indices of the original
|
149 |
+
warping paths are adapted such that they cross the anchors.
|
150 |
+
|
151 |
+
Parameters
|
152 |
+
----------
|
153 |
+
warping_paths : list
|
154 |
+
List of warping paths
|
155 |
+
|
156 |
+
anchors : np.ndarray [shape=(2, N)]
|
157 |
+
Anchor sequence
|
158 |
+
|
159 |
+
Returns
|
160 |
+
-------
|
161 |
+
path : np.ndarray [shape=(2, M)]
|
162 |
+
Merged path
|
163 |
+
"""
|
164 |
+
|
165 |
+
if anchors is None:
|
166 |
+
# When no anchor points are given, we can construct them from the
|
167 |
+
# subpaths in the wp_list
|
168 |
+
|
169 |
+
# To do this, we assume that the first path's element is the starting
|
170 |
+
# anchor
|
171 |
+
anchors = warping_paths[0][:, 0]
|
172 |
+
|
173 |
+
# Retrieve the last element of each path
|
174 |
+
anchors_tmp = np.zeros(len(warping_paths), np.float32)
|
175 |
+
for idx, x in enumerate(warping_paths):
|
176 |
+
anchors_tmp[idx] = x[:, -1]
|
177 |
+
|
178 |
+
# Correct indices, such that the indices of the anchors are given on a
|
179 |
+
# common path. Each anchor a_l = [Nnew_[l+1];Mnew_[l+1]]
|
180 |
+
# Nnew_[l+1] = N_l + N_[l+1] -1
|
181 |
+
# Mnew_[l+1] = M_l + M_[l+1] -1
|
182 |
+
|
183 |
+
anchors_tmp = np.cumsum(anchors_tmp, axis=1)
|
184 |
+
anchors_tmp[:, 1:] = anchors_tmp[:, 1:] - [np.arange(1, anchors_tmp.shape[1]),
|
185 |
+
np.arange(1, anchors_tmp.shape[1])]
|
186 |
+
|
187 |
+
anchors = np.concatenate([anchors, anchors_tmp], axis=1)
|
188 |
+
|
189 |
+
L = len(warping_paths) + 1
|
190 |
+
path = None
|
191 |
+
wp = None
|
192 |
+
|
193 |
+
for anchor_idx in range(1, L):
|
194 |
+
anchor1 = anchors[:, anchor_idx - 1]
|
195 |
+
anchor2 = anchors[:, anchor_idx]
|
196 |
+
|
197 |
+
wp = np.array(warping_paths[anchor_idx - 1], copy=True)
|
198 |
+
|
199 |
+
# correct indices in warpingPath
|
200 |
+
wp += np.repeat(anchor1.reshape(-1, 1), wp.shape[1], axis=1).astype(wp.dtype)
|
201 |
+
|
202 |
+
# consistency checks
|
203 |
+
assert np.array_equal(wp[:, 0], anchor1), 'First entry of warping path does not coincide with anchor point'
|
204 |
+
assert np.array_equal(wp[:, -1], anchor2), 'Last entry of warping path does not coincide with anchor point'
|
205 |
+
|
206 |
+
if path is None:
|
207 |
+
path = np.array(wp[:, :-1], copy=True)
|
208 |
+
else:
|
209 |
+
path = np.concatenate([path, wp[:, :-1]], axis=1)
|
210 |
+
|
211 |
+
# append last index of warping path
|
212 |
+
path = np.concatenate([path, wp[:, -1].reshape(-1, 1)], axis=1)
|
213 |
+
|
214 |
+
return path
|
215 |
+
|
216 |
+
|
217 |
+
def find_anchor_indices_in_warping_path(warping_path: np.ndarray,
|
218 |
+
anchors: np.ndarray) -> np.ndarray:
|
219 |
+
"""Compute the indices in the warping path that corresponds
|
220 |
+
to the elements in 'anchors'
|
221 |
+
|
222 |
+
Parameters
|
223 |
+
----------
|
224 |
+
warping_path : np.ndarray [shape=(2, N)]
|
225 |
+
Warping path
|
226 |
+
|
227 |
+
anchors : np.ndarray [shape=(2, M)]
|
228 |
+
Anchor sequence
|
229 |
+
|
230 |
+
Returns
|
231 |
+
-------
|
232 |
+
indices : np.ndarray [shape=(2, M)]
|
233 |
+
Anchor indices in the ``warping_path``
|
234 |
+
"""
|
235 |
+
indices = np.zeros(anchors.shape[1])
|
236 |
+
|
237 |
+
for k in range(anchors.shape[1]):
|
238 |
+
a = anchors[:, k]
|
239 |
+
indices[k] = np.where((a[0] == warping_path[0, :]) & (a[1] == warping_path[1, :]))[0]
|
240 |
+
|
241 |
+
return indices
|
242 |
+
|
243 |
+
|
244 |
+
def make_path_strictly_monotonic(P: np.ndarray) -> np.ndarray:
|
245 |
+
"""Compute strict alignment path from a warping path
|
246 |
+
|
247 |
+
Wrapper around "compute_strict_alignment_path_mask" from libfmp.
|
248 |
+
|
249 |
+
Parameters
|
250 |
+
----------
|
251 |
+
P: np.ndarray [shape=(2, N)]
|
252 |
+
Warping path
|
253 |
+
|
254 |
+
Returns
|
255 |
+
-------
|
256 |
+
P_mod: np.ndarray [shape=(2, M)]
|
257 |
+
Strict alignment path, M <= N
|
258 |
+
"""
|
259 |
+
P_mod = compute_strict_alignment_path_mask(P.T)
|
260 |
+
|
261 |
+
return P_mod.T
|
262 |
+
|
263 |
+
def compute_strict_alignment_path_mask(P):
|
264 |
+
"""Compute strict alignment path from a warping path
|
265 |
+
|
266 |
+
Notebook: C3/C3S3_MusicAppTempoCurve.ipynb
|
267 |
+
|
268 |
+
Args:
|
269 |
+
P (list or np.ndarray): Wapring path
|
270 |
+
|
271 |
+
Returns:
|
272 |
+
P_mod (list or np.ndarray): Strict alignment path
|
273 |
+
"""
|
274 |
+
P = np.array(P, copy=True)
|
275 |
+
N, M = P[-1]
|
276 |
+
# Get indices for strict monotonicity
|
277 |
+
keep_mask = (P[1:, 0] > P[:-1, 0]) & (P[1:, 1] > P[:-1, 1])
|
278 |
+
# Add first index to enforce start boundary condition
|
279 |
+
keep_mask = np.concatenate(([True], keep_mask))
|
280 |
+
# Remove all indices for of last row or column
|
281 |
+
keep_mask[(P[:, 0] == N) | (P[:, 1] == M)] = False
|
282 |
+
# Add last index to enforce end boundary condition
|
283 |
+
keep_mask[-1] = True
|
284 |
+
P_mod = P[keep_mask, :]
|
285 |
+
|
286 |
+
return P_mod
|
287 |
+
|
288 |
+
|
289 |
+
def evaluate_synchronized_positions(ground_truth_positions: np.ndarray,
|
290 |
+
synchronized_positions: np.ndarray,
|
291 |
+
tolerances: List = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 250]):
|
292 |
+
"""Compute standard evaluation measures for evaluating the quality of synchronized (musical) positions.
|
293 |
+
|
294 |
+
When synchronizing two versions of a piece of music, one can evaluate the quality of the resulting alignment
|
295 |
+
by comparing errors at musical positions (e.g. beats or measures) that appear in both versions.
|
296 |
+
This function implements two measures: mean absolute error at positions and the percentage of correctly transferred
|
297 |
+
measures given a threshold.
|
298 |
+
|
299 |
+
Parameters
|
300 |
+
----------
|
301 |
+
ground_truth_positions: np.ndarray [shape=N]
|
302 |
+
Positions (e.g. beat or measure positions) annotated in the target version of a piece of music, in milliseconds.
|
303 |
+
|
304 |
+
synchronized_positions: np.ndarray [shape=N]
|
305 |
+
The same musical positions as in 'ground_truth_positions' obtained by transfer using music synchronization,
|
306 |
+
in milliseconds.
|
307 |
+
|
308 |
+
tolerances: list of integers
|
309 |
+
Tolerances (in miliseconds) used for comparing annotated and synchronized positions.
|
310 |
+
|
311 |
+
Returns
|
312 |
+
-------
|
313 |
+
mean_absolute_error: float
|
314 |
+
Mean absolute error for synchronized positions, in miliseconds.
|
315 |
+
|
316 |
+
accuracy_at_tolerances: list of floats
|
317 |
+
Percentages of correctly transferred measures, for each entry in 'tolerances'.
|
318 |
+
|
319 |
+
"""
|
320 |
+
absolute_errors_at_positions = np.abs(synchronized_positions - ground_truth_positions)
|
321 |
+
|
322 |
+
print('Measure transfer from recording 1 to 2 yielded:')
|
323 |
+
mean_absolute_error = np.mean(absolute_errors_at_positions)
|
324 |
+
print('\nMean absolute error (MAE): %.2fms (standard deviation: %.2fms)' % (mean_absolute_error,
|
325 |
+
np.std(absolute_errors_at_positions)))
|
326 |
+
print('\nAccuracy of transferred positions at different tolerances:')
|
327 |
+
print('\t\t\tAccuracy')
|
328 |
+
print('################################')
|
329 |
+
accuracy_at_tolerances = []
|
330 |
+
for tolerance in tolerances:
|
331 |
+
accuracy = np.mean((absolute_errors_at_positions < tolerance)) * 100.0
|
332 |
+
accuracy_at_tolerances.append(accuracy)
|
333 |
+
print('Tolerance: {} ms \t{:.2f} %'.format(tolerance, accuracy))
|
334 |
+
|
335 |
+
return mean_absolute_error, accuracy_at_tolerances
|
336 |
+
|
337 |
+
|
338 |
+
def smooth_downsample_feature(f_feature: np.ndarray,
|
339 |
+
input_feature_rate: float,
|
340 |
+
win_len_smooth: int = 0,
|
341 |
+
downsamp_smooth: int = 1) -> Tuple[np.ndarray, float]:
|
342 |
+
"""Temporal smoothing and downsampling of a feature sequence
|
343 |
+
|
344 |
+
Parameters
|
345 |
+
----------
|
346 |
+
f_feature : np.ndarray
|
347 |
+
Input feature sequence, size dxN
|
348 |
+
|
349 |
+
input_feature_rate : float
|
350 |
+
Input feature rate in Hz
|
351 |
+
|
352 |
+
win_len_smooth : int
|
353 |
+
Smoothing window length. For 0, no smoothing is applied.
|
354 |
+
|
355 |
+
downsamp_smooth : int
|
356 |
+
Downsampling factor. For 1, no downsampling is applied.
|
357 |
+
|
358 |
+
Returns
|
359 |
+
-------
|
360 |
+
f_feature_stat : np.ndarray
|
361 |
+
Downsampled & smoothed feature.
|
362 |
+
|
363 |
+
new_feature_rate : float
|
364 |
+
New feature rate after downsampling
|
365 |
+
"""
|
366 |
+
if win_len_smooth != 0 or downsamp_smooth != 1:
|
367 |
+
# hack to get the same results as on MATLAB
|
368 |
+
stat_window = np.hanning(win_len_smooth+2)[1:-1]
|
369 |
+
stat_window /= np.sum(stat_window)
|
370 |
+
|
371 |
+
# upfirdn filters and downsamples each column of f_stat_help
|
372 |
+
f_feature_stat = signal.upfirdn(h=stat_window, x=f_feature, up=1, down=downsamp_smooth)
|
373 |
+
seg_num = f_feature.shape[1]
|
374 |
+
stat_num = int(np.ceil(seg_num / downsamp_smooth))
|
375 |
+
cut = int(np.floor((win_len_smooth - 1) / (2 * downsamp_smooth)))
|
376 |
+
f_feature_stat = f_feature_stat[:, cut: stat_num + cut]
|
377 |
+
else:
|
378 |
+
f_feature_stat = f_feature
|
379 |
+
|
380 |
+
new_feature_rate = input_feature_rate / downsamp_smooth
|
381 |
+
|
382 |
+
return f_feature_stat, new_feature_rate
|
383 |
+
|
384 |
+
|
385 |
+
@jit(nopython=True)
|
386 |
+
def normalize_feature(feature: np.ndarray,
|
387 |
+
norm_ord: int,
|
388 |
+
threshold: float) -> np.ndarray:
|
389 |
+
"""Normalizes a feature sequence according to the l^norm_ord norm.
|
390 |
+
|
391 |
+
Parameters
|
392 |
+
----------
|
393 |
+
feature : np.ndarray
|
394 |
+
Input feature sequence of size d x N
|
395 |
+
d: dimensionality of feature vectors
|
396 |
+
N: number of feature vectors (time in frames)
|
397 |
+
|
398 |
+
norm_ord : int
|
399 |
+
Norm degree
|
400 |
+
|
401 |
+
threshold : float
|
402 |
+
If the norm falls below threshold for a feature vector, then the
|
403 |
+
normalized feature vector is set to be the normalized unit vector.
|
404 |
+
|
405 |
+
Returns
|
406 |
+
-------
|
407 |
+
f_normalized : np.ndarray
|
408 |
+
Normalized feature sequence
|
409 |
+
"""
|
410 |
+
# TODO rewrite in vectorized fashion
|
411 |
+
d, N = feature.shape
|
412 |
+
f_normalized = np.zeros((d, N))
|
413 |
+
|
414 |
+
# normalize the vectors according to the l^norm_ord norm
|
415 |
+
unit_vec = np.ones(d)
|
416 |
+
unit_vec = unit_vec / np.linalg.norm(unit_vec, norm_ord)
|
417 |
+
|
418 |
+
for k in range(N):
|
419 |
+
cur_norm = np.linalg.norm(feature[:, k], norm_ord)
|
420 |
+
|
421 |
+
if cur_norm < threshold:
|
422 |
+
f_normalized[:, k] = unit_vec
|
423 |
+
else:
|
424 |
+
f_normalized[:, k] = feature[:, k] / cur_norm
|
425 |
+
|
426 |
+
return f_normalized
|
musc/dtw/visualization.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib
|
2 |
+
import matplotlib.cm
|
3 |
+
import matplotlib.patches
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
+
from typing import Tuple, List
|
7 |
+
|
8 |
+
|
9 |
+
def sync_visualize_step1(cost_matrices: List,
|
10 |
+
num_rows: int,
|
11 |
+
num_cols: int,
|
12 |
+
anchors: np.ndarray,
|
13 |
+
wp: np.ndarray) -> Tuple[plt.Figure, plt.Axes]:
|
14 |
+
|
15 |
+
fig, ax = plt.subplots(1, 1, dpi=72)
|
16 |
+
ax = __visualize_cost_matrices(ax, cost_matrices)
|
17 |
+
__visualize_constraint_rectangles(anchors[[1, 0], :],
|
18 |
+
edgecolor='firebrick')
|
19 |
+
|
20 |
+
__visualize_path_in_matrix(ax=ax,
|
21 |
+
wp=wp,
|
22 |
+
axisX=np.arange(0, num_rows),
|
23 |
+
axisY=np.arange(0, num_cols),
|
24 |
+
path_color='firebrick')
|
25 |
+
|
26 |
+
return fig, ax
|
27 |
+
|
28 |
+
|
29 |
+
def sync_visualize_step2(ax: plt.Axes,
|
30 |
+
cost_matrices: list,
|
31 |
+
wp_step2: np.ndarray,
|
32 |
+
wp_step1: np.ndarray,
|
33 |
+
num_rows_step1: int,
|
34 |
+
num_cols_step1: int,
|
35 |
+
anchors_step1: np.ndarray,
|
36 |
+
neighboring_anchors: np.ndarray,
|
37 |
+
plot_title: str = ""):
|
38 |
+
|
39 |
+
offset_x = neighboring_anchors[0, 0] - 1
|
40 |
+
offset_y = neighboring_anchors[1, 0] - 1
|
41 |
+
ax = __visualize_cost_matrices(ax=ax,
|
42 |
+
cost_matrices=cost_matrices,
|
43 |
+
offset_x=offset_x,
|
44 |
+
offset_y=offset_y)
|
45 |
+
|
46 |
+
__visualize_constraint_rectangles(anchors_step1[[1, 0], :],
|
47 |
+
edgecolor='firebrick')
|
48 |
+
|
49 |
+
__visualize_path_in_matrix(ax=ax,
|
50 |
+
wp=wp_step1,
|
51 |
+
axisX=np.arange(0, num_rows_step1),
|
52 |
+
axisY=np.arange(0, num_cols_step1),
|
53 |
+
path_color='firebrick')
|
54 |
+
|
55 |
+
__visualize_constraint_rectangles(neighboring_anchors[[1, 0], :] - 1,
|
56 |
+
edgecolor='orangered',
|
57 |
+
linestyle='--')
|
58 |
+
|
59 |
+
__visualize_path_in_matrix(ax=ax,
|
60 |
+
wp=wp_step2,
|
61 |
+
axisX=np.arange(0, num_rows_step1),
|
62 |
+
axisY=np.arange(0, num_cols_step1),
|
63 |
+
path_color='orangered')
|
64 |
+
|
65 |
+
ax.set_title(plot_title)
|
66 |
+
ax.set_ylabel("Version 1 (frames)")
|
67 |
+
ax.set_xlabel("Version 2 (frames)")
|
68 |
+
|
69 |
+
ax = plt.gca() # get the current axes
|
70 |
+
pcm = None
|
71 |
+
for pcm in ax.get_children():
|
72 |
+
if isinstance(pcm, matplotlib.cm.ScalarMappable):
|
73 |
+
break
|
74 |
+
plt.colorbar(pcm, ax=ax)
|
75 |
+
plt.tight_layout()
|
76 |
+
plt.show()
|
77 |
+
|
78 |
+
|
79 |
+
def __size_dtw_matrices(dtw_matrices: List) -> Tuple[List[np.ndarray], List[np.ndarray]]:
|
80 |
+
"""Gives information about the dimensionality of a DTW matrix
|
81 |
+
given in form of a list matrix
|
82 |
+
|
83 |
+
Parameters
|
84 |
+
----------
|
85 |
+
dtw_matrices: list
|
86 |
+
The DTW matrix (cost matrix or accumulated cost matrix) given in form a list.
|
87 |
+
|
88 |
+
Returns
|
89 |
+
-------
|
90 |
+
axisX_list: list
|
91 |
+
A list containing a horizontal axis for each of the sub matrices
|
92 |
+
which specifies the horizontal position of the respective submatrix
|
93 |
+
in the overall cost matrix.
|
94 |
+
|
95 |
+
axis_y_list: list
|
96 |
+
A list containing a vertical axis for each of the
|
97 |
+
sub matrices which specifies the vertical position of the
|
98 |
+
respective submatrix in the overall cost matrix.
|
99 |
+
|
100 |
+
"""
|
101 |
+
num_matrices = len(dtw_matrices)
|
102 |
+
size_list = [dtw_mat.shape for dtw_mat in dtw_matrices]
|
103 |
+
|
104 |
+
axis_x_list = list()
|
105 |
+
axis_y_list = list()
|
106 |
+
|
107 |
+
x_acc = 0
|
108 |
+
y_acc = 0
|
109 |
+
|
110 |
+
for i in range(num_matrices):
|
111 |
+
curr_size_list = size_list[i]
|
112 |
+
axis_x_list.append(np.arange(x_acc, x_acc + curr_size_list[0]))
|
113 |
+
axis_y_list.append(np.arange(y_acc, y_acc + curr_size_list[1]))
|
114 |
+
x_acc += curr_size_list[0] - 1
|
115 |
+
y_acc += curr_size_list[1] - 1
|
116 |
+
|
117 |
+
return axis_x_list, axis_y_list
|
118 |
+
|
119 |
+
|
120 |
+
def __visualize_cost_matrices(ax: plt.Axes,
|
121 |
+
cost_matrices: list = None,
|
122 |
+
offset_x: float = 0.0,
|
123 |
+
offset_y: float = 0.0) -> plt.Axes:
|
124 |
+
"""Visualizes cost matrices
|
125 |
+
|
126 |
+
Parameters
|
127 |
+
----------
|
128 |
+
ax : axes
|
129 |
+
The Axes instance to plot on
|
130 |
+
|
131 |
+
cost_matrices : list
|
132 |
+
List of DTW cost matrices.
|
133 |
+
|
134 |
+
offset_x : float
|
135 |
+
Offset on the x axis.
|
136 |
+
|
137 |
+
offset_y : float
|
138 |
+
Offset on the y axis.
|
139 |
+
|
140 |
+
Returns
|
141 |
+
-------
|
142 |
+
ax: axes
|
143 |
+
The Axes instance to plot on
|
144 |
+
|
145 |
+
"""
|
146 |
+
x_ax, y_ax = __size_dtw_matrices(dtw_matrices=cost_matrices)
|
147 |
+
|
148 |
+
for i, cur_cost in enumerate(cost_matrices[::-1]):
|
149 |
+
curr_x_ax = x_ax[i] + offset_x
|
150 |
+
curr_y_ax = y_ax[i] + offset_y
|
151 |
+
cur_cost = cost_matrices[i]
|
152 |
+
ax.imshow(cur_cost, cmap='gray_r', aspect='auto', origin='lower',
|
153 |
+
extent=[curr_y_ax[0], curr_y_ax[-1], curr_x_ax[0], curr_x_ax[-1]])
|
154 |
+
|
155 |
+
return ax
|
156 |
+
|
157 |
+
|
158 |
+
def __visualize_path_in_matrix(ax,
|
159 |
+
wp: np.ndarray = None,
|
160 |
+
axisX: np.ndarray = None,
|
161 |
+
axisY: np.ndarray = None,
|
162 |
+
path_color: str = 'r'):
|
163 |
+
"""Plots a warping path on top of a given matrix. The matrix is
|
164 |
+
usually an accumulated cost matrix.
|
165 |
+
|
166 |
+
Parameters
|
167 |
+
----------
|
168 |
+
ax : axes
|
169 |
+
The Axes instance to plot on
|
170 |
+
|
171 |
+
wp : np.ndarray
|
172 |
+
Warping path
|
173 |
+
|
174 |
+
axisX : np.ndarray
|
175 |
+
Array of X axis
|
176 |
+
|
177 |
+
axisY : np.ndarray
|
178 |
+
Array of Y axis
|
179 |
+
|
180 |
+
path_color : str
|
181 |
+
Color of the warping path to be plotted. (default: r)
|
182 |
+
"""
|
183 |
+
assert axisX is not None and isinstance(axisX, np.ndarray), 'axisX must be a numpy array!'
|
184 |
+
assert axisY is not None and isinstance(axisY, np.ndarray), 'axisY must be a numpy array!'
|
185 |
+
|
186 |
+
wp = wp.astype(int)
|
187 |
+
|
188 |
+
ax.plot(axisY[wp[1, :]], axisX[wp[0, :]], '-k', linewidth=5)
|
189 |
+
ax.plot(axisY[wp[1, :]], axisX[wp[0, :]], color=path_color, linewidth=3)
|
190 |
+
|
191 |
+
|
192 |
+
def __visualize_constraint_rectangles(anchors: np.ndarray,
|
193 |
+
linestyle: str = '-',
|
194 |
+
edgecolor: str = 'royalblue',
|
195 |
+
linewidth: float = 1.0):
|
196 |
+
|
197 |
+
for k in range(anchors.shape[1]-1):
|
198 |
+
a1 = anchors[:, k]
|
199 |
+
a2 = anchors[:, k + 1]
|
200 |
+
|
201 |
+
# a rectangle is defined by [x y width height]
|
202 |
+
x = a1[0]
|
203 |
+
y = a1[1]
|
204 |
+
w = a2[0] - a1[0] + np.finfo(float).eps
|
205 |
+
h = a2[1] - a1[1] + np.finfo(float).eps
|
206 |
+
|
207 |
+
rect = matplotlib.patches.Rectangle((x, y), w, h,
|
208 |
+
linewidth=linewidth,
|
209 |
+
edgecolor=edgecolor,
|
210 |
+
linestyle=linestyle,
|
211 |
+
facecolor='none')
|
212 |
+
|
213 |
+
plt.gca().add_patch(rect)
|
214 |
+
|
215 |
+
|
216 |
+
|
musc/model.py
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from musc.pathway import TinyPathway
|
2 |
+
from musc.synchronizer import Synchronizer
|
3 |
+
from musc.representations import PerformanceLabel
|
4 |
+
from torchaudio.models.conformer import ConformerLayer
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
import numpy as np
|
8 |
+
import os
|
9 |
+
import json
|
10 |
+
import gdown
|
11 |
+
|
12 |
+
|
13 |
+
class FourHeads(Synchronizer):
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
pathway_multiscale: int = 32,
|
17 |
+
num_pathway_layers: int = 2,
|
18 |
+
chunk_size: int = 256,
|
19 |
+
hop_length: int = 256,
|
20 |
+
encoder_dim: int = 256,
|
21 |
+
sr: int = 44100,
|
22 |
+
num_heads: int = 4,
|
23 |
+
ffn_dim: int = 128,
|
24 |
+
num_separator_layers: int = 16,
|
25 |
+
num_representation_layers: int = 4,
|
26 |
+
depthwise_conv_kernel_size: int = 31,
|
27 |
+
dropout: float = 0.25,
|
28 |
+
use_group_norm: bool = False,
|
29 |
+
convolution_first: bool = False,
|
30 |
+
labeling=PerformanceLabel(),
|
31 |
+
wiring='tiktok'
|
32 |
+
):
|
33 |
+
super().__init__(labeling, sr=sr, hop_length=hop_length)
|
34 |
+
self.main = TinyPathway(dilation=1, hop=hop_length, localize=True,
|
35 |
+
n_layers=num_pathway_layers, chunk_size=chunk_size)
|
36 |
+
self.attendant = TinyPathway(dilation=pathway_multiscale, hop=hop_length, localize=False,
|
37 |
+
n_layers=num_pathway_layers, chunk_size=chunk_size)
|
38 |
+
assert self.main.hop == self.attendant.hop # they should output with the same sample rate
|
39 |
+
print('hop in samples:', self.main.hop)
|
40 |
+
self.input_window = self.attendant.input_window
|
41 |
+
|
42 |
+
self.encoder_dim = encoder_dim
|
43 |
+
self.dropout = nn.Dropout(dropout)
|
44 |
+
|
45 |
+
# merge two streams into a conformer input
|
46 |
+
self.stream_merger = nn.Sequential(self.dropout,
|
47 |
+
nn.Linear(self.main.out_dim + self.attendant.out_dim, self.encoder_dim))
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
print('main stream window:', self.main.input_window,
|
52 |
+
', attendant stream window:', self.attendant.input_window,
|
53 |
+
', conformer input dim:', self.encoder_dim)
|
54 |
+
|
55 |
+
center = ((chunk_size - 1) * self.main.hop) # region labeled with pitch track
|
56 |
+
main_overlap = self.main.input_window - center
|
57 |
+
main_overlap = [int(np.floor(main_overlap / 2)), int(np.ceil(main_overlap / 2))]
|
58 |
+
attendant_overlap = self.attendant.input_window - center
|
59 |
+
attendant_overlap = [int(np.floor(attendant_overlap / 2)), int(np.ceil(attendant_overlap / 2))]
|
60 |
+
print('main frame overlap:', main_overlap, ', attendant frame overlap:', attendant_overlap)
|
61 |
+
main_crop_relative = [attendant_overlap[0] - main_overlap[0], main_overlap[1] - attendant_overlap[1]]
|
62 |
+
print('crop for main pathway', main_crop_relative)
|
63 |
+
print("Total sequence duration is", self.attendant.input_window, 'samples')
|
64 |
+
print('Main stream receptive field for one frame is', (self.main.input_window - center), 'samples')
|
65 |
+
print('Attendant stream receptive field for one frame is', (self.attendant.input_window - center), 'samples')
|
66 |
+
self.frame_overlap = attendant_overlap
|
67 |
+
|
68 |
+
self.main_stream_crop = main_crop_relative
|
69 |
+
self.max_window_size = self.attendant.input_window
|
70 |
+
self.chunk_size = chunk_size
|
71 |
+
|
72 |
+
self.separator_stream = nn.ModuleList( # source-separation, reinvented
|
73 |
+
[
|
74 |
+
ConformerLayer(
|
75 |
+
input_dim=self.encoder_dim,
|
76 |
+
ffn_dim=ffn_dim,
|
77 |
+
num_attention_heads=num_heads,
|
78 |
+
depthwise_conv_kernel_size=depthwise_conv_kernel_size,
|
79 |
+
dropout=dropout,
|
80 |
+
use_group_norm=use_group_norm,
|
81 |
+
convolution_first=convolution_first,
|
82 |
+
)
|
83 |
+
for _ in range(num_separator_layers)
|
84 |
+
]
|
85 |
+
)
|
86 |
+
|
87 |
+
self.f0_stream = nn.ModuleList(
|
88 |
+
[
|
89 |
+
ConformerLayer(
|
90 |
+
input_dim=self.encoder_dim,
|
91 |
+
ffn_dim=ffn_dim,
|
92 |
+
num_attention_heads=num_heads,
|
93 |
+
depthwise_conv_kernel_size=depthwise_conv_kernel_size,
|
94 |
+
dropout=dropout,
|
95 |
+
use_group_norm=use_group_norm,
|
96 |
+
convolution_first=convolution_first,
|
97 |
+
)
|
98 |
+
for _ in range(num_representation_layers)
|
99 |
+
]
|
100 |
+
)
|
101 |
+
self.f0_head = nn.Linear(self.encoder_dim, len(self.labeling.f0_centers_c))
|
102 |
+
|
103 |
+
self.note_stream = nn.ModuleList(
|
104 |
+
[
|
105 |
+
ConformerLayer(
|
106 |
+
input_dim=self.encoder_dim,
|
107 |
+
ffn_dim=ffn_dim,
|
108 |
+
num_attention_heads=num_heads,
|
109 |
+
depthwise_conv_kernel_size=depthwise_conv_kernel_size,
|
110 |
+
dropout=dropout,
|
111 |
+
use_group_norm=use_group_norm,
|
112 |
+
convolution_first=convolution_first,
|
113 |
+
)
|
114 |
+
for _ in range(num_representation_layers)
|
115 |
+
]
|
116 |
+
)
|
117 |
+
self.note_head = nn.Linear(self.encoder_dim, len(self.labeling.midi_centers))
|
118 |
+
|
119 |
+
self.onset_stream = nn.ModuleList(
|
120 |
+
[
|
121 |
+
ConformerLayer(
|
122 |
+
input_dim=self.encoder_dim,
|
123 |
+
ffn_dim=ffn_dim,
|
124 |
+
num_attention_heads=num_heads,
|
125 |
+
depthwise_conv_kernel_size=depthwise_conv_kernel_size,
|
126 |
+
dropout=dropout,
|
127 |
+
use_group_norm=use_group_norm,
|
128 |
+
convolution_first=convolution_first,
|
129 |
+
)
|
130 |
+
for _ in range(num_representation_layers)
|
131 |
+
]
|
132 |
+
)
|
133 |
+
self.onset_head = nn.Linear(self.encoder_dim, len(self.labeling.midi_centers))
|
134 |
+
|
135 |
+
self.offset_stream = torch.nn.ModuleList(
|
136 |
+
[
|
137 |
+
ConformerLayer(
|
138 |
+
input_dim=self.encoder_dim,
|
139 |
+
ffn_dim=ffn_dim,
|
140 |
+
num_attention_heads=num_heads,
|
141 |
+
depthwise_conv_kernel_size=depthwise_conv_kernel_size,
|
142 |
+
dropout=dropout,
|
143 |
+
use_group_norm=use_group_norm,
|
144 |
+
convolution_first=convolution_first,
|
145 |
+
)
|
146 |
+
for _ in range(num_representation_layers)
|
147 |
+
]
|
148 |
+
)
|
149 |
+
self.offset_head = nn.Linear(self.encoder_dim, len(self.labeling.midi_centers))
|
150 |
+
|
151 |
+
self.labeling = labeling
|
152 |
+
self.double_merger = nn.Sequential(self.dropout, nn.Linear(2 * self.encoder_dim, self.encoder_dim))
|
153 |
+
self.triple_merger = nn.Sequential(self.dropout, nn.Linear(3 * self.encoder_dim, self.encoder_dim))
|
154 |
+
self.wiring = wiring
|
155 |
+
|
156 |
+
print('Total parameter count: ', self.count_parameters())
|
157 |
+
|
158 |
+
def count_parameters(self) -> int:
|
159 |
+
""" Count parameters of encoder """
|
160 |
+
return sum([p.numel() for p in self.parameters()])
|
161 |
+
|
162 |
+
def stream(self, x, representation, key_padding_mask=None):
|
163 |
+
for i, layer in enumerate(self.__getattr__('{}_stream'.format(representation))):
|
164 |
+
x = layer(x, key_padding_mask)
|
165 |
+
return x
|
166 |
+
def head(self, x, representation):
|
167 |
+
return self.__getattr__('{}_head'.format(representation))(x)
|
168 |
+
|
169 |
+
def forward(self, x, key_padding_mask=None):
|
170 |
+
|
171 |
+
# two auditory streams followed by the separator stream to ensure timbre-awareness
|
172 |
+
x_attendant = self.attendant(x)
|
173 |
+
x_main = self.main(x[:, self.main_stream_crop[0]:self.main_stream_crop[1]])
|
174 |
+
x = self.stream_merger(torch.cat((x_attendant, x_main), -1).squeeze(1))
|
175 |
+
x = self.stream(x, 'separator', key_padding_mask)
|
176 |
+
|
177 |
+
f0 = self.stream(x, 'f0', key_padding_mask) # they say this is a low level feature :)
|
178 |
+
|
179 |
+
if self.wiring == 'parallel':
|
180 |
+
note = self.stream(x, 'note', key_padding_mask)
|
181 |
+
onset = self.stream(x, 'onset', key_padding_mask)
|
182 |
+
offset = self.stream(x, 'offset', key_padding_mask)
|
183 |
+
|
184 |
+
elif self.wiring == 'tiktok':
|
185 |
+
onset = self.stream(x, 'onset', key_padding_mask)
|
186 |
+
offset = self.stream(x, 'offset', key_padding_mask)
|
187 |
+
# f0 is disconnected, note relies on separator, onset, and offset
|
188 |
+
note = self.stream(self.triple_merger(torch.cat((x, onset, offset), -1)), 'note', key_padding_mask)
|
189 |
+
|
190 |
+
elif self.wiring == 'tiktok2':
|
191 |
+
onset = self.stream(x, 'onset', key_padding_mask)
|
192 |
+
offset = self.stream(x, 'offset', key_padding_mask)
|
193 |
+
# note is connected to f0, onset, and offset
|
194 |
+
note = self.stream(self.triple_merger(torch.cat((f0, onset, offset), -1)), 'note', key_padding_mask)
|
195 |
+
|
196 |
+
elif self.wiring == 'spotify':
|
197 |
+
# note is connected to f0 only
|
198 |
+
note = self.stream(f0, 'note', key_padding_mask)
|
199 |
+
# here onset and onsets are higher-level features informed by the separator and note
|
200 |
+
onset = self.stream(self.double_merger(torch.cat((x, note), -1)), 'onset', key_padding_mask)
|
201 |
+
offset = self.stream(self.double_merger(torch.cat((x, note), -1)), 'offset', key_padding_mask)
|
202 |
+
|
203 |
+
else:
|
204 |
+
# onset and offset are connected to f0 and separator streams
|
205 |
+
onset = self.stream(self.double_merger(torch.cat((x, f0), -1)), 'onset', key_padding_mask)
|
206 |
+
offset = self.stream(self.double_merger(torch.cat((x, f0), -1)), 'offset', key_padding_mask)
|
207 |
+
# note is connected to f0, onset, and offset streams
|
208 |
+
note = self.stream(self.triple_merger(torch.cat((f0, onset, offset), -1)), 'note', key_padding_mask)
|
209 |
+
|
210 |
+
|
211 |
+
return {'f0': self.head(f0, 'f0'),
|
212 |
+
'note': self.head(note, 'note'),
|
213 |
+
'onset': self.head(onset, 'onset'),
|
214 |
+
'offset': self.head(offset, 'offset')}
|
215 |
+
|
216 |
+
|
217 |
+
class PretrainedModel(FourHeads):
|
218 |
+
def __init__(self, instrument='violin'):
|
219 |
+
assert instrument in ['violin', 'Violin', 'vln', 'vl'], 'As of now, the only supported instrument is the violin'
|
220 |
+
instrument = 'violin'
|
221 |
+
package_dir = os.path.dirname(os.path.realpath(__file__))
|
222 |
+
with open(os.path.join(package_dir, instrument + ".json"), "r") as f:
|
223 |
+
args = json.load(f)
|
224 |
+
labeling = PerformanceLabel(note_min=args['note_low'], note_max=args['note_high'],
|
225 |
+
f0_bins_per_semitone=args['f0_bins_per_semitone'],
|
226 |
+
f0_tolerance_c=200,
|
227 |
+
f0_smooth_std_c=args['f0_smooth_std_c'], onset_smooth_std=args['onset_smooth_std'])
|
228 |
+
|
229 |
+
super().__init__(pathway_multiscale=args['pathway_multiscale'],
|
230 |
+
num_pathway_layers=args['num_pathway_layers'], wiring=args['wiring'],
|
231 |
+
hop_length=args['hop_length'], chunk_size=args['chunk_size'],
|
232 |
+
labeling=labeling, sr=args['sampling_rate'])
|
233 |
+
self.model_url = args['model_file']
|
234 |
+
self.load_weight(instrument)
|
235 |
+
self.eval()
|
236 |
+
|
237 |
+
def load_weight(self, instrument):
|
238 |
+
self.download_weights(instrument)
|
239 |
+
package_dir = os.path.dirname(os.path.realpath(__file__))
|
240 |
+
filename = "{}_model.pt".format(instrument)
|
241 |
+
self.load_state_dict(torch.load(os.path.join(package_dir, filename)))
|
242 |
+
|
243 |
+
def download_weights(self, instrument):
|
244 |
+
weight_file = "{}_model.pt".format(instrument)
|
245 |
+
package_dir = os.path.dirname(os.path.realpath(__file__))
|
246 |
+
weight_path = os.path.join(package_dir, weight_file)
|
247 |
+
if not os.path.isfile(weight_path):
|
248 |
+
package_dir = os.path.dirname(os.path.realpath(__file__))
|
249 |
+
weight_path = os.path.join(package_dir, weight_file)
|
250 |
+
if not os.path.exists(weight_path):
|
251 |
+
gdown.download(f"https://drive.google.com/uc?export=download&confirm=pbef&id={self.model_url}", weight_path)
|
252 |
+
|
253 |
+
@staticmethod
|
254 |
+
def download_youtube(url, audio_codec='wav'):
|
255 |
+
from yt_dlp import YoutubeDL
|
256 |
+
ydl_opts = {'no-playlist': True, 'quiet': True, 'format': 'bestaudio/best',
|
257 |
+
'outtmpl': '%(id)s.%(ext)s', 'postprocessors': [{
|
258 |
+
'key': 'FFmpegExtractAudio',
|
259 |
+
'preferredcodec': audio_codec,
|
260 |
+
'preferredquality': '192', }], }
|
261 |
+
with YoutubeDL(ydl_opts) as ydl:
|
262 |
+
info_dict = ydl.extract_info(url, download=False)
|
263 |
+
video_id = info_dict.get('id', None)
|
264 |
+
title = info_dict.get('title', None)
|
265 |
+
ydl.download([url])
|
266 |
+
return video_id + '.' + audio_codec, video_id, title
|
267 |
+
|
268 |
+
def transcribe_youtube(self, url, audio_codec='wav', batch_size=64,
|
269 |
+
postprocessing='spotify', include_pitch_bends=True):
|
270 |
+
file_path, video_id, title = self.download_youtube(url, audio_codec=audio_codec)
|
271 |
+
midi = self.transcribe(file_path, batch_size=batch_size,
|
272 |
+
postprocessing=postprocessing, include_pitch_bends=include_pitch_bends)
|
273 |
+
return midi, video_id, title
|
274 |
+
|
275 |
+
|