|  | from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation | 
					
						
						|  | from PIL import Image | 
					
						
						|  | import requests | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-coco-instance") | 
					
						
						|  | model = Mask2FormerForUniversalSegmentation.from_pretrained( | 
					
						
						|  | "facebook/mask2former-swin-small-coco-instance" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | url = "http://images.cocodataset.org/val2017/000000039769.jpg" | 
					
						
						|  | image = Image.open(requests.get(url, stream=True).raw) | 
					
						
						|  | inputs = image_processor(image, return_tensors="pt") | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | outputs = model(**inputs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class_queries_logits = outputs.class_queries_logits | 
					
						
						|  | masks_queries_logits = outputs.masks_queries_logits | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pred_instance_map = image_processor.post_process_semantic_segmentation( | 
					
						
						|  | outputs, target_sizes=[image.size[::-1]] | 
					
						
						|  | )[0] | 
					
						
						|  | print(pred_instance_map.shape) |