Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
|
2 |
+
from PIL import Image
|
3 |
+
import requests
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Load Mask2Former trained on COCO instance segmentation dataset
|
7 |
+
image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-coco-instance")
|
8 |
+
model = Mask2FormerForUniversalSegmentation.from_pretrained(
|
9 |
+
"facebook/mask2former-swin-small-coco-instance"
|
10 |
+
)
|
11 |
+
|
12 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
13 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
14 |
+
inputs = image_processor(image, return_tensors="pt")
|
15 |
+
|
16 |
+
with torch.no_grad():
|
17 |
+
outputs = model(**inputs)
|
18 |
+
|
19 |
+
# Model predicts class_queries_logits of shape `(batch_size, num_queries)`
|
20 |
+
# and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
|
21 |
+
class_queries_logits = outputs.class_queries_logits
|
22 |
+
masks_queries_logits = outputs.masks_queries_logits
|
23 |
+
|
24 |
+
# Perform post-processing to get instance segmentation map
|
25 |
+
pred_instance_map = image_processor.post_process_semantic_segmentation(
|
26 |
+
outputs, target_sizes=[image.size[::-1]]
|
27 |
+
)[0]
|
28 |
+
print(pred_instance_map.shape)
|