decision_tree / app.py
shane666's picture
Update app.py
b4c616c
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from six import StringIO
from sklearn import tree
import pandas as pd
import numpy as np
import pydotplus
import gradio as gr
from PIL import Image
def Tree_Detection(noise, rotation, power_up, temp):
noise = int(noise)
rotation = int(rotation)
power_up = int(power_up)
temp = int(temp)
with open('lenses.txt', 'r') as fr: # 加载文件
lenses = [inst.strip().split('\t') for inst in fr.readlines()] # 处理文件
lenses_target = [] # 提取每组数据的类别,保存在列表里
# print(lenses)
for each in lenses:
lenses_target.append(each[-1])
# print(lenses_target)
lensesLabels = ['noise', 'rotation', 'power-up', 'temp'] # 特征标签
lenses_list = [] # 保存lenses数据的临时列表
lenses_dict = {} # 保存lenses数据的字典,用于生成pandas
for each_label in lensesLabels: # 提取信息,生成字典
for each in lenses:
lenses_list.append(each[lensesLabels.index(each_label)])
lenses_dict[each_label] = lenses_list
lenses_list = []
# print(lenses_dict) # 打印字典信息
lenses_pd = pd.DataFrame(lenses_dict) # 生成pandas.DataFrame
# print(lenses_pd) # 打印pandas.DataFrame
le = LabelEncoder() # 创建LabelEncoder()对象,用于序列化
for col in lenses_pd.columns: # 序列化
lenses_pd[col] = le.fit_transform(lenses_pd[col])
# print(lenses_pd) # 打印编码信息
clf = tree.DecisionTreeClassifier(max_depth=None) # 创建DecisionTreeClassifier()类
clf = clf.fit(lenses_pd.values.tolist(), lenses_target) # 使用数据,构建决策树
dot_data = StringIO()
tree.export_graphviz(clf, out_file=dot_data, # 绘制决策树
feature_names=lenses_pd.keys(),
class_names=clf.classes_,
filled=True, rounded=True,
special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
#img = graph.write_jpg("tree.jpg") # 保存绘制好的决策树,以JPG的形式存储。
sample = []
sample.append(noise)
sample.append(rotation)
sample.append(power_up)
sample.append(temp)
result = f'The fault type is : {clf.predict([sample])[0]}' # 预测
image = Image.open("tree.jpg")
return result, image
# print(Tree_Detection([2, 1, 1, 0]))
def test(image):
return image
demo = gr.Interface(
fn=Tree_Detection,
inputs=[
gr.components.Textbox(label="noise: dron=0, explosion=1, soundless=2"),
gr.components.Textbox(label="rotation: common=0, delay=1"),
gr.components.Textbox(label="power-up: no=0, yes=1"),
gr.components.Textbox(label="tempreture: high=0, normal=1"),
],
outputs=['text', 'image']
)
demo.launch()