from sklearn.preprocessing import LabelEncoder, OneHotEncoder from six import StringIO from sklearn import tree import pandas as pd import numpy as np import pydotplus import gradio as gr from PIL import Image def Tree_Detection(noise, rotation, power_up, temp): noise = int(noise) rotation = int(rotation) power_up = int(power_up) temp = int(temp) with open('lenses.txt', 'r') as fr: # 加载文件 lenses = [inst.strip().split('\t') for inst in fr.readlines()] # 处理文件 lenses_target = [] # 提取每组数据的类别,保存在列表里 # print(lenses) for each in lenses: lenses_target.append(each[-1]) # print(lenses_target) lensesLabels = ['noise', 'rotation', 'power-up', 'temp'] # 特征标签 lenses_list = [] # 保存lenses数据的临时列表 lenses_dict = {} # 保存lenses数据的字典,用于生成pandas for each_label in lensesLabels: # 提取信息,生成字典 for each in lenses: lenses_list.append(each[lensesLabels.index(each_label)]) lenses_dict[each_label] = lenses_list lenses_list = [] # print(lenses_dict) # 打印字典信息 lenses_pd = pd.DataFrame(lenses_dict) # 生成pandas.DataFrame # print(lenses_pd) # 打印pandas.DataFrame le = LabelEncoder() # 创建LabelEncoder()对象,用于序列化 for col in lenses_pd.columns: # 序列化 lenses_pd[col] = le.fit_transform(lenses_pd[col]) # print(lenses_pd) # 打印编码信息 clf = tree.DecisionTreeClassifier(max_depth=None) # 创建DecisionTreeClassifier()类 clf = clf.fit(lenses_pd.values.tolist(), lenses_target) # 使用数据,构建决策树 dot_data = StringIO() tree.export_graphviz(clf, out_file=dot_data, # 绘制决策树 feature_names=lenses_pd.keys(), class_names=clf.classes_, filled=True, rounded=True, special_characters=True) graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) #img = graph.write_jpg("tree.jpg") # 保存绘制好的决策树,以JPG的形式存储。 sample = [] sample.append(noise) sample.append(rotation) sample.append(power_up) sample.append(temp) result = f'The fault type is : {clf.predict([sample])[0]}' # 预测 image = Image.open("tree.jpg") return result, image # print(Tree_Detection([2, 1, 1, 0])) def test(image): return image demo = gr.Interface( fn=Tree_Detection, inputs=[ gr.components.Textbox(label="noise: dron=0, explosion=1, soundless=2"), gr.components.Textbox(label="rotation: common=0, delay=1"), gr.components.Textbox(label="power-up: no=0, yes=1"), gr.components.Textbox(label="tempreture: high=0, normal=1"), ], outputs=['text', 'image'] ) demo.launch()