serJD's picture
Update app.py
23c33f3
raw
history blame
16.6 kB
import sys
sys.path.append("speckleUtils")
import speckle_utils
import os
import json
import pandas as pd
import copy
from functools import wraps
from specklepy.api.client import SpeckleClient
from tripGenerationFunc import *
import gradio as gr
import requests
from huggingface_hub import webhook_endpoint, WebhookPayload
from fastapi import Request
import datetime
curl -X POST -H "Content-Type: application/json" \
-d '{"payload": {"stream": {"name": "2B_100_batch"}}}' \
https://serjd-recode-hf-tripgeneration.hf.space/webhooks/update_streams
#https://serjd-recode_hf_tripGeneration.hf.space/webhooks/update_streams
#https://serjd-syncspeckle2notion.hf.space/webhooks/update_streams
current_directory = os.path.dirname(os.path.abspath(__file__))
# Path to the config.json file
config_file_path = os.path.join(current_directory, "config.json")
# Check if the config.json file exists
if os.path.exists(config_file_path):
# Load the JSON data from config.json
with open(config_file_path, 'r') as f:
config = json.load(f)
# Convert to Python variables with the same names as the keys in the JSON
locals().update(config)
print("varaibles from json")
# Now you can access the variables directly
print(STREAM_ID)
print(BRANCH_NAME_LAND_USES)
print(TARGET_TRIP_RATE)
print(ALPHA_LOW)
print(F_VALUES_MANUAL)
print(distance_matrices_of_interest)
print(redistributeTrips)
print(DISTANCE_BRACKETS)
print(XLS_FILE_PATH)
print("==================")
else:
print("Error: config.json file not found in the current directory.")
# checks payload of webhook and runs the main code if webhook was triggered by specified stream + one of the branches
listendStreams = [STREAM_ID]
listendBranchNames = [BRANCH_NAME_LAND_USES,BRANCH_NAME_DISTANCE_MATRIX,BRANCH_NAME_METRIC_DIST_MATRIX]
@webhook_endpoint
async def update_streams(request: Request):
# Initialize flag
should_continue = False
# Read the request body as JSON
payload = await request.json()
print("============= payload =============")
print(payload)
print("============= payload =============")
# Check if the payload structure matches the expected format
if "event" in payload and "data" in payload["event"]:
event_data = payload["event"]["data"]
# Check if the event type is "commit_create"
if "type" in event_data and event_data["type"] == "commit_create":
# Check if the stream name matches the specified list
if "stream" in event_data and event_data["stream"] in listendStreams:
# Check if the branch name matches the specified list
if "commit" in event_data and "branchName" in event_data["commit"]:
if event_data["commit"]["branchName"] in listendBranchNames:
should_continue = True
else:
print("Branch name not found in payload.")
else:
print("Stream name not found or not in the specified list.")
else:
print("Event type is not 'commit_create'.")
else:
print("Payload structure does not match the expected format.")
# If the flag is True, continue running the main part of the code
if should_continue:
# Your main code logic goes here
runAll()
else:
print("Flag is False. Skipping further execution.")
return "Webhook processing complete."
def runAll():
# get config file:# Parse JSON
speckle_token = os.environ.get("SPECKLE_TOKEN")
xls_file_path = os.path.join(current_directory, XLS_FILE_PATH)
print("full path", xls_file_path)
# fetch speckle data
CLIENT = SpeckleClient(host="https://speckle.xyz/")
CLIENT.authenticate_with_token(token="52566d1047b881764e16ad238356abeb2fc35d8b42")
# get land use stream
stream_land_use = speckle_utils.getSpeckleStream(STREAM_ID,
BRANCH_NAME_LAND_USES,
CLIENT,
commit_id = "")
# navigate to list with speckle objects of interest
stream_data = stream_land_use["@Data"]["@{0}"]
# transform stream_data to dataframe (create a backup copy of this dataframe)
df_speckle_lu = speckle_utils.get_dataframe(stream_data, return_original_df=False)
df_main = df_speckle_lu.copy()
# set index column
df_main = df_main.set_index("ids", drop=False)
# get distance matrix stream
stream_distance_matrice = speckle_utils.getSpeckleStream(STREAM_ID,
BRANCH_NAME_DISTANCE_MATRIX,
CLIENT,
commit_id = "")
# navigate to list with speckle objects of interest
distance_matrices = {}
for distM in stream_distance_matrice["@Data"]['@{0}']:
for kk in distM.__dict__.keys():
try:
if kk.split("+")[1].startswith("distance_matrix"):
distance_matrix_dict = json.loads(distM[kk])
origin_ids = distance_matrix_dict["origin_uuid"]
destination_ids = distance_matrix_dict["destination_uuid"]
distance_matrix = distance_matrix_dict["matrix"]
# Convert the distance matrix to a DataFrame
df_distances = pd.DataFrame(distance_matrix, index=origin_ids, columns=destination_ids)
# i want to add the index & colum names to dist_m_csv
#distance_matrices[kk] = dist_m_csv[kk]
distance_matrices[kk] = df_distances
except:
pass
# get metric matrix stream
stream_metric_matrice = speckle_utils.getSpeckleStream(STREAM_ID,
BRANCH_NAME_METRIC_DIST_MATRIX,
CLIENT,
commit_id = "")
# navigate to list with speckle objects of interest
metric_matrices = {}
for distM in stream_metric_matrice["@Data"]['@{0}']:
print(distM.__dict__.keys())
for kk in distM.__dict__.keys():
try:
if kk.split("+")[1].startswith("metric_matrix"):
metric_matrix_dict = json.loads(distM[kk])
origin_ids = metric_matrix_dict["origin_uuid"]
destination_ids = metric_matrix_dict["destination_uuid"]
metric_matrix = metric_matrix_dict["matrix"]
# Convert the distance matrix to a DataFrame
df_metric_dist = pd.DataFrame(metric_matrix, index=origin_ids, columns=destination_ids)
metric_matrices[kk] = df_metric_dist*10 #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
print("metric_matrix_dict", metric_matrix_dict.keys())
except:
pass
metric_matrices = extract_distance_matrices(stream_metric_matrice, metric_matrices_of_interest)
sourceCommits = {
"landuseCommitID": stream_land_use.id,
"distanceMatrixCommitID": stream_distance_matrice.id,
"metricMatrixCommitID": stream_metric_matrice.id
}
# READ XLS FILE ======================================
# Read Excel file into Pandas DataFrame
#Production
# Load Excel file separately
#xls_file_path = os.path.join(current_directory, XLS_FILE_PATH)
if os.path.exists(xls_file_path):
# Production
df_production = pd.read_excel(xls_file_path, sheet_name='Production')
df_production_transposed = df_production.T
df_production = preprocess_dataFrame(df_production, headerRow_idx=2, numRowsStart_idx=3)
df_production_transposed = preprocess_dataFrame(df_production_transposed, headerRow_idx=0, numRowsStart_idx=4,
numColsStart_idx=4, rowNames_idx=2)
# Attraction
df_attraction = pd.read_excel(xls_file_path, sheet_name='Attraction')
df_attraction = preprocess_dataFrame(df_attraction, headerRow_idx=0, numRowsStart_idx=2)
# Distribution_Matrix
df_distributionMatrix = pd.read_excel(xls_file_path, sheet_name='Distribution_Matrix')
df_distributionMatrix = preprocess_dataFrame(df_distributionMatrix, headerRow_idx=0, numRowsStart_idx=2,
numRowsEnd_idx=None, numColsStart_idx=2, numColsEnd_idx=None,
rowNames_idx=0)
# Alphas
df_alphas = pd.read_excel(xls_file_path, sheet_name='Alphas')
df_alphas.columns = df_alphas.iloc[1]
df_alphas = df_alphas.iloc[0, 2:]
# Land use
df_lu = pd.read_excel(xls_file_path, sheet_name='Example_Land_Use')
df_lu = preprocess_dataFrame(df_lu, headerRow_idx=0, numRowsStart_idx=1)
df_lu["nameCombined"] = df_lu.iloc[:, 1].astype(str) + "+" + df_lu.iloc[:, 0].astype(str)
# Distance Matrix
df_distMatrix = pd.read_excel(xls_file_path, sheet_name='Example_Distance_Matrix')
df_distMatrix = preprocess_dataFrame(df_distMatrix, headerRow_idx=0, numRowsStart_idx=1, numRowsEnd_idx=None,
numColsStart_idx=1, numColsEnd_idx=None, rowNames_idx=0)
else:
print("Error: Excel file specified in config.json not found.")
# Land use strucutre =======
# THIS IS THE DISTANCE MATRIX THATS USED DOWN THE ROAD
df_distances_aligned, df_lu_stream_aligned = align_dataframes(distance_matrices[distanceMatrixName], df_main, 'ids')
#Create a df with lanuses
lu_cols = [col for col in df_lu_stream_aligned.columns if col.startswith("lu+")]
df_lu_stream = df_lu_stream_aligned[lu_cols]
# Remove "lu+" from the beginning of column names
df_lu_stream.columns = df_lu_stream.columns.str.lstrip('lu+')
df_lu_stream = df_lu_stream.T
df_lu_stream_t = df_lu_stream.T
df_lu_stream_with_nameLu_column = df_lu_stream.reset_index(drop=False).rename(columns={'index': 'nameLu'})
#---
df_lu_names_xlsx = pd.concat([df_lu.iloc[:, 0:2], df_lu.iloc[:, -1]], axis=1)
df_lu_names_xlsx.index = df_lu_names_xlsx.iloc[:, 1]
column_names = ['nameTripType', 'nameLu', 'nameCombined']
df_lu_names_xlsx.columns = column_names
print(f"df_lu_names_xlsx shape: {df_lu_names_xlsx.shape}")
df_lu_names_xlsx.head()
#--
# Merge DataFrames using an outer join
merged_df = pd.merge(df_lu_stream_with_nameLu_column, df_lu_names_xlsx, on='nameLu', how='outer')
# Get the unique names and their counts from df_lu_names_xlsx
name_counts = df_lu_names_xlsx['nameLu'].value_counts()
#print(name_counts)
# Identify names in df_lu_stream_with_nameLu_column that are not in df_lu_names_xlsx
missing_names = df_lu_stream_with_nameLu_column.loc[~df_lu_stream_with_nameLu_column['nameLu'].isin(df_lu_names_xlsx['nameLu'])]
# Append missing rows to df_lu_stream_with_nameLu_column
df_lu_stream_duplicated = pd.concat([merged_df, missing_names], ignore_index=True)
#--
# Find names in df_lu_names_xlsx that are not in df_lu_stream_with_nameLu_column
missing_names = df_lu_names_xlsx.loc[~df_lu_names_xlsx['nameLu'].isin(df_lu_stream_with_nameLu_column['nameLu'])]
#--
# print existing names (?)
df_lu_names_sorted = df_lu_names_xlsx.sort_values(by='nameLu')
df_lu_stream_duplicated_sorted = df_lu_stream_duplicated.sort_values(by='nameLu')
#--
# Merge DataFrames to get the order of names
merged_order = pd.merge(df_lu_names_xlsx[['nameCombined']], df_lu_stream_duplicated[['nameCombined']], on='nameCombined', how='inner')
# Sort df_lu_stream_duplicated based on the order of names in df_lu_names_xlsx
df_lu_stream_sorted = df_lu_stream_duplicated.sort_values(by='nameCombined', key=lambda x: pd.Categorical(x, categories=merged_order['nameCombined'], ordered=True))
# Reorganize columns
column_order = ['nameTripType', 'nameCombined'] + [col for col in df_lu_stream_sorted.columns if col not in ['nameTripType', 'nameCombined']]
# Create a new DataFrame with the desired column order
df_lu_stream_reordered = df_lu_stream_sorted[column_order]
df_lu_stream_reordered_t = df_lu_stream_reordered.T
#--
df_lu_stream_with_index = df_lu_stream_reordered_t.reset_index(drop=False).rename(columns={'index': 'ids'})
df_lu_stream_with_index.index = df_lu_stream_reordered_t.index
df_lu_num_t_index = df_lu_stream_with_index.iloc[3:]
df_distances_aligned_index = df_distances_aligned.reset_index(drop=False).rename(columns={'index': 'ids'})
df_distances_aligned_index.index = df_distances_aligned.index
df_lu_namesCombined = df_lu_stream_with_index.loc["nameCombined"].iloc[1:]
# Sort df_lu_stream_with_index based on the 'ids' column in df_distances_aligned_index
df_lu_stream_sorted = df_lu_stream_with_index.sort_values(by=['ids'], key=lambda x: pd.Categorical(x, categories=df_distances_aligned_index['ids'], ordered=True))
df_lu_num = df_lu_stream_sorted.T.iloc[1:, :-3]
df_lu_num.index = df_lu_namesCombined
df_distMatrix_speckle = df_distances_aligned
df_attraction_num = df_attraction.reset_index().iloc[:-1, 6:]
# =============================================================================
# TRIP GENERATION
# ATTRACTION & PRODUCTION ======================================================
"""
INPUTS
df_attraction_num
df_lu_num
df_production
df_lu
df_production_transposed
"""
df_attraction_proNode_sum_total = attraction_proNode_full_iter(df_attraction_num, df_lu_num, True)
#Get the sqmProPerson
df_sqmProPerson = df_production.iloc[0, 4:].reset_index()[3]
#Get the trip rate
df_tripRate = copy.deepcopy(df_production) # create a copy ensures df_tripRate doenst point to df_production
df_tripRate.index = df_tripRate.iloc[:, 0] #Set the row names
df_tripRate = df_tripRate.iloc[1:, 2]
#Numerical df from production ==============================================
df_production_num = df_production.iloc[1:, 4:]
df_production_transposed1 = df_production_num.T
df_total_trips_allNodes = production_proNode_total(df_lu,
df_sqmProPerson,
df_tripRate,
df_production_num,
df_production_transposed,
df_lu_num, printSteps=False)
# Convert data types to float
df_total_trips_allNodes = df_total_trips_allNodes.astype(float)
df_tripRate = df_tripRate.astype(float)
df_total_trips_allNodes_sumPerson = df_total_trips_allNodes.div(df_tripRate, axis=0).sum()
df_total_trips_allNodes_sumPerson_proCat = df_total_trips_allNodes.div(df_tripRate, axis=0)
df_total_trips_allNodes_sumPerson_proCat_t = df_total_trips_allNodes_sumPerson_proCat.T
df_total_trips_allNodes_sumPerson_proCat_t_sum = df_total_trips_allNodes_sumPerson_proCat_t.sum()
# get total population
total_population = df_total_trips_allNodes_sumPerson_proCat_t_sum["Tot_Res"] + df_total_trips_allNodes_sumPerson_proCat_t_sum["Tot_tou"]
# =============================================================================
distance_matrices = extract_distance_matrices(stream_distance_matrice, distance_matrices_of_interest)
metric_matrices_ = extract_distance_matrices(stream_metric_matrice, metric_matrices_of_interest)
metric_matrices = { k:v*10 for k, v in metric_matrices_.items()} # scale (speckle issue)
logs = computeTrips(
df_distributionMatrix,
df_total_trips_allNodes,
df_distMatrix_speckle,
df_alphas,
df_attraction_proNode_sum_total,
df_distances_aligned,
TARGET_TRIP_RATE,
SCALING_FACTOR,
total_population,
df_total_trips_allNodes_sumPerson_proCat_t_sum["Tot_Res"],
df_total_trips_allNodes_sumPerson_proCat_t_sum["Tot_tou"],
distance_matrices,
metric_matrices,
redistributeTrips,
DISTANCE_BRACKETS,
ALPHA_LOW, ALPHA_MED, ALPHA_HIGH, ALPHA, ALPHA_UNIFORM, F_VALUES_MANUAL,
CLIENT,
STREAM_ID,
TARGET_BRANCH_TM,
sourceCommits
)
print(logs)