Spaces:
Configuration error
Configuration error
import numpy as np | |
import gradio as gr | |
import segment_anything | |
import imutils | |
import numpy as np | |
import base64 | |
import torch | |
import typing | |
import os | |
import subprocess | |
def image_to_sam_image_embedding( | |
image_url: str, | |
model_size: typing.Literal["base", "large", "huge"] = "base", | |
) -> str: | |
"""Generate an image embedding.""" | |
# Load image | |
image = imutils.url_to_image(image_url) | |
# Select model size | |
if model_size == "base": | |
predictor = base_predictor | |
elif model_size == "large": | |
predictor = large_predictor | |
elif model_size == "huge": | |
predictor = huge_predictor | |
# Run model | |
predictor.set_image(image) | |
# Output shape is (1, 256, 64, 64) | |
image_embedding = predictor.get_image_embedding().cpu().numpy() | |
# Flatten the array to a 1D array | |
flat_arr = image_embedding.flatten() | |
# Convert the 1D array to bytes | |
bytes_arr = flat_arr.astype(np.float32).tobytes() | |
# Encode the bytes to base64 | |
base64_str = base64.b64encode(bytes_arr).decode("utf-8") | |
return base64_str | |
if __name__ == "__main__": | |
# Load the model into memory to make running multiple predictions efficient | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
base_sam_checkpoint = "sam_vit_b_01ec64.pth" # 375 MB | |
large_sam_checkpoint = "sam_vit_l_0b3195.pth" # 1.25 GB | |
huge_sam_checkpoint = "sam_vit_h_4b8939.pth" # 2.56 GB | |
# Download the model checkpoints | |
for model in [base_sam_checkpoint, large_sam_checkpoint, huge_sam_checkpoint]: | |
if not os.path.exists(f"./{model}"): | |
result = subprocess.run( | |
["wget", f"https://dl.fbaipublicfiles.com/segment_anything/{model}"], | |
check=True, | |
) | |
print(f"wget {model} result = {result}") | |
base_sam = segment_anything.sam_model_registry["vit_b"]( | |
checkpoint=base_sam_checkpoint | |
) | |
large_sam = segment_anything.sam_model_registry["vit_l"]( | |
checkpoint=large_sam_checkpoint | |
) | |
huge_sam = segment_anything.sam_model_registry["vit_h"]( | |
checkpoint=huge_sam_checkpoint | |
) | |
base_sam.to(device=device) | |
large_sam.to(device=device) | |
huge_sam.to(device=device) | |
base_predictor = segment_anything.SamPredictor(base_sam) | |
large_predictor = segment_anything.SamPredictor(large_sam) | |
huge_predictor = segment_anything.SamPredictor(huge_sam) | |
# Gradio app | |
app = gr.Interface( | |
fn=image_to_sam_image_embedding, | |
inputs="text", | |
outputs="text", | |
) | |
app.launch() | |