segments-arnaud commited on
Commit
9974436
1 Parent(s): a4654d8

Add gradio app

Browse files
Files changed (1) hide show
  1. app.py +83 -4
app.py CHANGED
@@ -1,7 +1,86 @@
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
  import gradio as gr
3
+ import segment_anything
4
+ import imutils
5
+ import numpy as np
6
+ import base64
7
+ import torch
8
+ import typing
9
+ import os
10
+ import subprocess
11
 
 
 
12
 
13
+ def image_to_sam_image_embedding(
14
+ image_url: str,
15
+ model_size: typing.Literal["base", "large", "huge"] = "base",
16
+ ) -> str:
17
+ """Generate an image embedding."""
18
+ # Load image
19
+ image = imutils.url_to_image(image_url)
20
+
21
+ # Select model size
22
+ if model_size == "base":
23
+ predictor = base_predictor
24
+ elif model_size == "large":
25
+ predictor = large_predictor
26
+ elif model_size == "huge":
27
+ predictor = huge_predictor
28
+
29
+ # Run model
30
+ predictor.set_image(image)
31
+ # Output shape is (1, 256, 64, 64)
32
+ image_embedding = predictor.get_image_embedding().cpu().numpy()
33
+
34
+ # Flatten the array to a 1D array
35
+ flat_arr = image_embedding.flatten()
36
+ # Convert the 1D array to bytes
37
+ bytes_arr = flat_arr.astype(np.float32).tobytes()
38
+ # Encode the bytes to base64
39
+ base64_str = base64.b64encode(bytes_arr).decode("utf-8")
40
+
41
+ return base64_str
42
+
43
+
44
+ if __name__ == "__main__":
45
+
46
+ # Load the model into memory to make running multiple predictions efficient
47
+ device = "cuda" if torch.cuda.is_available() else "cpu"
48
+
49
+ base_sam_checkpoint = "sam_vit_b_01ec64.pth" # 375 MB
50
+ large_sam_checkpoint = "sam_vit_l_0b3195.pth" # 1.25 GB
51
+ huge_sam_checkpoint = "sam_vit_h_4b8939.pth" # 2.56 GB
52
+
53
+ # Download the model checkpoints
54
+ for model in [base_sam_checkpoint, large_sam_checkpoint, huge_sam_checkpoint]:
55
+ if not os.path.exists(f"./{model}"):
56
+ result = subprocess.run(
57
+ ["wget", f"https://dl.fbaipublicfiles.com/segment_anything/{model}"],
58
+ check=True,
59
+ )
60
+ print(f"wget {model} result = {result}")
61
+
62
+ base_sam = segment_anything.sam_model_registry["vit_b"](
63
+ checkpoint=base_sam_checkpoint
64
+ )
65
+ large_sam = segment_anything.sam_model_registry["vit_l"](
66
+ checkpoint=large_sam_checkpoint
67
+ )
68
+ huge_sam = segment_anything.sam_model_registry["vit_h"](
69
+ checkpoint=huge_sam_checkpoint
70
+ )
71
+
72
+ base_sam.to(device=device)
73
+ large_sam.to(device=device)
74
+ huge_sam.to(device=device)
75
+
76
+ base_predictor = segment_anything.SamPredictor(base_sam)
77
+ large_predictor = segment_anything.SamPredictor(large_sam)
78
+ huge_predictor = segment_anything.SamPredictor(huge_sam)
79
+
80
+ # Gradio app
81
+ app = gr.Interface(
82
+ fn=image_to_sam_image_embedding,
83
+ inputs="text",
84
+ outputs="text",
85
+ )
86
+ app.launch()