Spaces:
Sleeping
Sleeping
#/* DARNA.HI | |
# * Copyright (c) 2023 Seapoe1809 <https://github.com/seapoe1809> | |
# * Copyright (c) 2023 pnmeka <https://github.com/pnmeka> | |
# * | |
# * | |
# * This program is free software: you can redistribute it and/or modify | |
# * it under the terms of the GNU General Public License as published by | |
# * the Free Software Foundation, either version 3 of the License, or | |
# * (at your option) any later version. | |
# * | |
# * This program is distributed in the hope that it will be useful, | |
# * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
# * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
# * GNU General Public License for more details. | |
# * | |
# * You should have received a copy of the GNU General Public License | |
# * along with this program. If not, see <http://www.gnu.org/licenses/>. | |
# */ | |
#uses chromaminer to chunk and embed and then uses function to extract relevant component | |
import os, subprocess | |
import re | |
import json | |
import random | |
import requests | |
import gradio as gr | |
import chromadb | |
import sqlite3 | |
import base64 | |
from io import BytesIO | |
from datetime import datetime | |
from fpdf import FPDF | |
import threading | |
from threading import local | |
from reportlab.pdfgen import canvas | |
from reportlab.lib.pagesizes import letter | |
import tempfile | |
from PIL import Image | |
import io | |
from ollama import AsyncClient | |
import asyncio | |
####NEW | |
#install pytesseract | |
#install pdf2image pip install reportlab PyPDF2 nltk wordcloud unidecode | |
#pdfplumber ollama | |
#from transformers import pipeline | |
#set model | |
model="mistral-nemo" | |
directory = "" | |
folderpath= "" | |
basic_info="" | |
conversation_memory = [] | |
""" | |
async def chat(messages): | |
async for part in await AsyncClient().chat(model=f'{model}', messages=messages, stream=True): | |
chunk=part['message']['content'] | |
yield chunk | |
""" | |
###########HUGGINGFACE DEMO | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from threading import Thread | |
import spaces | |
# Initialize device and model | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
MODEL = "mistralai/Mistral-Nemo-Instruct-2407" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Authenticate if needed | |
tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL, | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
ignore_mismatched_sizes=True) | |
async def chat(messages): | |
# Convert messages to the format required for the model | |
conversation = [{"role": "user", "content": msg['content']} if msg['role'] == "user" | |
else {"role": "assistant", "content": msg['content']} for msg in messages] | |
input_text = tokenizer.apply_chat_template(conversation, tokenize=False) | |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) | |
# Define a streamer to handle text generation output | |
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) | |
# Arguments for generating the response | |
generate_kwargs = dict( | |
input_ids=inputs, | |
max_new_tokens=1024, # Adjust max tokens as needed | |
do_sample=True, | |
top_p=0.9, # Sampling parameters | |
top_k=50, | |
temperature=0.7, | |
streamer=streamer, | |
repetition_penalty=1.2, | |
pad_token_id=tokenizer.pad_token_id | |
) | |
# Generate text in a separate thread | |
with torch.no_grad(): | |
thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
# Initialize full response and yield each part | |
full_response = "" | |
for new_text in streamer: | |
full_response += new_text | |
yield full_response | |
########### | |
#this truncates the words for use by Chroma to build context | |
def truncate_words(documents): | |
truncated_documents = [] | |
for doc in documents: | |
doc=str(doc) | |
words = doc.split()[:300] # Truncate to 300 words | |
truncated_documents.append(' '.join(words)) | |
return truncated_documents | |
def generate_context_and_sources( | |
query: str, | |
collection_name: str = "documents_collection", | |
persist_directory: str = "chroma_storage" | |
) -> (str, str): | |
print(persist_directory) | |
context, sources = "No data available", "No sources available." | |
try: | |
# Check if persist_directory exists; if not | |
if not os.path.exists(persist_directory): | |
print(f"Directory '{persist_directory}' does not exist. Skipping.") | |
return context, sources | |
chroma_client = chromadb.PersistentClient(path=persist_directory) | |
collection = chroma_client.get_collection(name=collection_name) | |
results = collection.query(query_texts=[query], n_results=3, include=["documents", "metadatas"]) | |
sources = "\n".join( | |
[ | |
f"{result.get('filename', 'Unknown filename')}: batch {result.get('batch_number', 'Unknown batch')}" | |
for result in results["metadatas"][0] # type: ignore | |
] | |
) | |
truncated_documents = truncate_words(results["documents"]) | |
context = "".join(truncated_documents) | |
except Exception as e: | |
print(f"Error accessing collection or processing query: {e}") | |
return context, sources | |
#set global directory | |
def set_user_directory(request: gr.Request): | |
global directory | |
referer= request.headers.get('referer') | |
if "user=1" in referer: | |
# Admin user | |
directory = "../Health_files/ocr_files/Darna_tesseract/" | |
elif "user=2" in referer: | |
# Non-admin user | |
directory = "../Health_files2/ocr_files/Darna_tesseract/" | |
else: | |
# Handle unexpected user types | |
directory = "/" | |
print(f"Current ocr directory: {directory}") | |
def set_user_health_files_directory(request: gr.Request): | |
global folderpath | |
referer= request.headers.get('referer') | |
if "user=1" in referer: | |
# Admin user | |
folderpath = "../Health_files/" | |
elif "user=2" in referer: | |
# Non-admin user | |
folderpath = "../Health_files2/" | |
else: | |
# Handle unexpected user types | |
folderpath = "/" | |
print(f"Current folderpath: {folderpath}") | |
#function to ananlyze the input query using re and make some assessment on where to get context | |
def analyze_query(query, directory): | |
#pattern for keyword | |
darna_pattern = r'(?:darnahi|darna|server|hello)\s*[:=]?\s*' | |
darna_match = re.search(darna_pattern, query, re.IGNORECASE) | |
darna_value = darna_match.group().strip() if darna_match else None | |
med_pattern = r'(?:meds|medication|medications|medicine|medicine|drug|drugs)\s*[:=]?\s*' | |
med_match = re.search(med_pattern, query, re.IGNORECASE) | |
med_value = med_match.group().strip() if med_match else None | |
summary_pattern = r'(?:medical|clinical|advice|advise|weight|diet)\s*[:=]?\s*' | |
summary_match = re.search(summary_pattern, query, re.IGNORECASE) | |
summary_value = summary_match.group().strip() if summary_match else None | |
past_medical_history_pattern = r'(?:history|procedure|procedures|surgery|pastmedical|pmh|past-medical|past-history)\s*[:=]?\s*' | |
past_medical_history_match = re.search(past_medical_history_pattern, query, re.IGNORECASE) | |
past_medical_history_value = past_medical_history_match.group().strip() if past_medical_history_match else None | |
xmr_pattern = r'(?:monero|xmr|crypto|cryptocurrency|privacy|XMR|MOnero)\s*[:=]?\s*' | |
xmr_match = re.search(xmr_pattern, query, re.IGNORECASE) | |
xmr_value = xmr_match.group().strip() if xmr_match else None | |
json_file_path= f'{directory}/wordcloud_summary.json' | |
try: | |
with open(json_file_path, 'r', encoding='utf-8') as file: | |
existing_data = json.load(file) | |
except FileNotFoundError: | |
existing_data = {} | |
result = "" | |
if darna_value is not None: | |
print(darna_value) | |
key='darnahi' | |
result += existing_data.get(key, " ")[:150] | |
if med_value is not None: | |
print(med_value) | |
key = 'darnahi_medications' | |
result += existing_data.get(key, " ")[:350] | |
if summary_value is not None: | |
print(summary_value) | |
key = 'darnahi_summary' | |
result += existing_data.get(key, "No data found for 'summary' key.")[:350] | |
if past_medical_history_value is not None: | |
print(past_medical_history_value) | |
key = 'darnahi_past_medical_history' | |
result += existing_data.get(key, " ")[:150] | |
if xmr_value is not None: | |
print(xmr_value) | |
key = 'darnahi_xmr' | |
result += existing_data.get(key, " ")[:150] | |
# Check if no pattern matched | |
if not (darna_match or med_match or summary_match or xmr_match or past_medical_history_match): | |
collection_name="documents_collection" | |
context, sources = generate_context_and_sources(query, collection_name, os.path.join(directory, 'chroma_storage')) | |
print(context, sources) | |
result = context[:150] | |
if result is None: | |
result={''} | |
print(result) | |
return result | |
#generate a chat function using the query and context | |
async def my_function(query, request: gr.Request, chat_history): | |
#pass userID | |
global conversation_memory | |
history ="<history>\n".join(conversation_memory) | |
if len(history) > 300: | |
history = history[-400:] | |
print(history) | |
referer= request.headers.get('referer') | |
if "user=2" in referer: | |
#non admin user | |
directory="../Health_files2/ocr_files/Darna_tesseract/" | |
print(directory) | |
elif "user=1" in referer: | |
#admin | |
directory="../Health_files/ocr_files/Darna_tesseract/" | |
print(directory) | |
else: | |
directory="/" | |
print("default dir") | |
#chroma rag | |
context=analyze_query(query, directory) | |
context=f'<context>{context}</context>' | |
messages = [ | |
{"role": "user", "content": "You are Darnabot. End with a followup"}, | |
{"role": "assistant", "content": "I am 'Darnabot', AI health assistant with domain expertise. How can I help?"}, | |
{"role": "user", "content": f"'Darnabot' answer query: {query} using context: {context}. Also here is history of previous conversation with user but ignore if not relevant to query: {history}"}, | |
] | |
full_response="" | |
async for content in chat(messages): | |
full_response += content | |
yield chat_history + [(query, full_response)] | |
conversation_memory.append(f"<history> {full_response}</history>") | |
conversation_memory = conversation_memory[-4:] | |
def clear_conversation(): | |
global conversation_memory | |
conversation_memory = [] | |
gr.ClearButton([msg, chatbot]) | |
return "", None | |
################################ | |
""" | |
#run ai to analyze records | |
#from analyze import * | |
import logging | |
import json | |
import subprocess | |
from typing import List, Tuple | |
def stepwise_error_handling_analyze(deidentify_words, folderpath: str, ocr_files: str, age: int, sex: str) -> List[Tuple[str, str]]: | |
logging.basicConfig(filename='error_log.txt', level=logging.ERROR, | |
format='%(asctime)s - %(levelname)s - %(message)s') | |
steps = [ | |
("Extract and write LForms data", lambda: extract_and_write_lforms_data(folderpath)), | |
("Process OCR files", lambda: process_ocr_files(ocr_files)), | |
("Collate images", lambda: collate_images(ocr_files, f"{ocr_files}/Darna_tesseract")), | |
("Deidentify records", deidentify_records(ocr_files, deidentify_words)), | |
("Generate recommendations", lambda: generate_recommendations(folderpath, age=age, sex=sex)), | |
("Process PDF files", lambda: process_pdf_files(ocr_files)), | |
("Process directory summary", lambda: process_directory_summary(ocr_files, ['HPI', 'history', 'summary'])), | |
("Create wordcloud", lambda: preprocess_and_create_wordcloud(process_directory_summary(ocr_files, ['HPI', 'history', 'summary']), f'{ocr_files}/Darna_tesseract/')), | |
("Process directory meds", lambda: process_directory_meds(ocr_files, ['medications', 'MEDICATIONS:', 'medicine', 'meds'])), | |
("Load screening text", lambda: load_text_from_json_screening(f'{ocr_files}/Darna_tesseract/combined_output.json', ['RECS', 'RECOMMENDATIONS'])), | |
("Process directory PMH", lambda: process_directory_pmh(ocr_files, ['PMH', 'medical', 'past medical history', 'surgical', 'past'])), | |
("Generate wordcloud summary", lambda: wordcloud_summary( | |
("darnahi_summary", "darnahi_past_medical_history", "darnahi_medications", "darnahi_screening"), | |
(process_directory_summary(ocr_files, ['HPI', 'history', 'summary']), | |
process_directory_pmh(ocr_files, ['PMH', 'medical', 'past medical history', 'surgical', 'past']), | |
process_directory_meds(ocr_files, ['medications', 'MEDICATIONS:', 'medicine', 'meds']), | |
load_text_from_json_screening(f'{ocr_files}/combined_output.json', ['RECS', 'RECOMMENDATIONS'])), | |
f'{ocr_files}/Darna_tesseract/' | |
)), | |
#("Chromadb embed", lambda: chromadb_embed(ocr_files)), | |
#("Clean up directory", lambda: subprocess.run(f'find {ocr_files} -maxdepth 1 -type f -exec rm {{}} +', shell=True)) | |
] | |
results = [] | |
for step_name, step_function in steps: | |
try: | |
step_function() | |
results.append((step_name, "Success")) | |
except Exception as e: | |
error_message = f"Error in {step_name}: {str(e)}" | |
logging.error(error_message) | |
results.append((step_name, f"Error: {str(e)}")) | |
return results | |
def extract_and_write_lforms_data(folderpath: str): | |
with open(f'{folderpath}/summary/chart.json', 'r') as file: | |
json_data = json.load(file) | |
extracted_info = extract_lforms_data(json.dumps(json_data)) | |
json_output = json.dumps(extracted_info, indent=4) | |
write_text_to_pdf(folderpath, str(extracted_info)) | |
with open(f'{folderpath}/ocr_files/fhir_output.json', 'w', encoding='utf-8') as f: | |
f.write(json_output) | |
""" | |
def extract_lforms_data(json_data): | |
if isinstance(json_data, str): | |
data = json.loads(json_data) | |
else: | |
data = json_data | |
extracted_info = { | |
"date_of_birth": None, | |
"sex": None, | |
"allergies": [], | |
"past_medical_history": [], | |
"medications": [] | |
} | |
for item in data.get("items", []): | |
if item.get("question") == "ABOUT ME": | |
for subitem in item.get("items", []): | |
if subitem.get("question") == "DATE OF BIRTH": | |
extracted_info["date_of_birth"] = subitem.get("value") | |
elif subitem.get("question") == "BIOLOGICAL SEX": | |
extracted_info["sex"] = subitem.get("value", {}).get("text") | |
elif item.get("question") == "ALLERGIES": | |
for allergy_item in item.get("items", []): | |
if allergy_item.get("question") == "Allergies and Other Dangerous Reactions": | |
for subitem in allergy_item.get("items", []): | |
if subitem.get("question") == "Name" and "value" in subitem: | |
extracted_info["allergies"].append(subitem["value"]["text"]) | |
elif item.get("question") == "PAST MEDICAL HISTORY:": | |
for condition_item in item.get("items", []): | |
if condition_item.get("question") == "PAST MEDICAL HISTORY" and "value" in condition_item: | |
condition = extract_condition(condition_item) | |
if condition: | |
extracted_info["past_medical_history"].append(condition) | |
elif item.get("question") == "MEDICATIONS:": | |
medication = {} | |
for med_item in item.get("items", []): | |
if med_item.get("question") == "MEDICATIONS": | |
medication["name"] = extract_med_value(med_item) | |
elif med_item.get("question") == "Strength": | |
medication["strength"] = extract_med_value(med_item) | |
elif med_item.get("question") == "Instructions": | |
medication["instructions"] = extract_med_value(med_item) | |
if medication: | |
extracted_info["medications"].append(medication) | |
return extracted_info | |
def extract_condition(condition_item): | |
if isinstance(condition_item.get("value"), dict): | |
return condition_item["value"].get("text", "") | |
elif isinstance(condition_item.get("value"), str): | |
return condition_item["value"] | |
return "" | |
def extract_med_value(med_item): | |
if "value" not in med_item: | |
return "" | |
value = med_item["value"] | |
if isinstance(value, str): | |
return value | |
elif isinstance(value, dict): | |
return value.get("text", "") | |
return "" | |
##run analyze located in ../dir | |
def analyze(request: gr.Request, deidentify_words): | |
set_user_health_files_directory(request) | |
if not folderpath: | |
print("folderpath value is empty. Skipping.") | |
return | |
# Set up environment variables | |
env_vars = os.environ.copy() | |
env_vars['FOLDERPATH'] = folderpath | |
if deidentify_words: | |
content = f"\nignore_words = '{deidentify_words}'\n" | |
file_path_variables2 = "../variables/variables2.py" | |
try: | |
with open(file_path_variables2, 'a') as file: | |
file.write(content) | |
print(f"Successfully appended deidentify_words to {file_path_variables2}") | |
except IOError as e: | |
error_message = f"IOError writing to variables2.py: {str(e)}" | |
print(error_message) | |
return error_message | |
except Exception as e: | |
error_message = f"Unexpected error writing to variables2.py: {str(e)}" | |
print(error_message) | |
return error_message | |
# Get the absolute path to the current script's directory | |
current_dir = os.path.dirname(os.path.abspath(__file__)) | |
# Set up the paths | |
venv_dir = os.path.abspath(os.path.join(current_dir, '..', 'darnavenv')) | |
venv_python = os.path.join(venv_dir, 'bin', 'python3.10') | |
analyze_script = os.path.abspath(os.path.join(current_dir, '..', 'analyze.py')) | |
command = [venv_python, analyze_script] | |
try: | |
result = subprocess.run(command, env=env_vars, check=True, text=True, capture_output=True) | |
print("Running Analyzer output:", result.stdout) | |
return "🟢 Analysis completed successfully" | |
except subprocess.CalledProcessError as e: | |
print("Error running analyze.py:", e) | |
print("Error output:", e.stderr) | |
##fetch age/sex in analyze module | |
def fetch_age_sex(request: gr.Request): | |
set_user_health_files_directory(request) | |
if not folderpath: | |
print("Directory value is empty. Skipping.") | |
return None, None, gr.update(visible=False), gr.update(visible=False) | |
ocr_files = f"{folderpath}/ocr_files" | |
try: | |
with open(f'{folderpath}/summary/chart.json', 'r') as file: | |
json_data = json.load(file) | |
extracted_info = extract_lforms_data(json.dumps(json_data)) | |
sex = extracted_info.get('sex', None) | |
dob_str = extracted_info.get('date_of_birth', None) | |
age = None | |
if dob_str is not None: | |
try: | |
dob = datetime.strptime(dob_str, '%Y-%m-%d') | |
today = datetime.now() | |
age = today.year - dob.year | |
# Adjust age if birthday hasn't occurred this year | |
if (today.month, today.day) < (dob.month, dob.day): | |
age -= 1 | |
except ValueError as e: | |
print(f"Error parsing date: {e}") | |
# Check if both age and sex are not None | |
if age is not None and sex is not None: | |
content = f"age = '{age}'\nsex = '{sex}'\n" | |
file_path_variables2 = f"../variables/variables2.py" | |
try: | |
with open(file_path_variables2, 'w') as file: | |
file.write(content) | |
except Exception as e: | |
print(f"Error writing to variables2.py: {str(e)}") | |
return None, None, gr.update(visible=False), gr.update(visible=False) | |
return f"Age: {age}\n Sex: {sex}\n", "🟢 Ready to analyze", gr.update(visible=True), gr.update(visible=True) | |
else: | |
return None, "🔴 Please update your age and sex in Darnahi Chartit", gr.update(visible=False), gr.update(visible=False) | |
except Exception as e: | |
return None, f"This is a demo version. Download to access full features. : {str(e)}", gr.update(visible=False), gr.update(visible=False) | |
####AI File server | |
def list_files(directory): | |
files = [] | |
try: | |
# List files in the main directory | |
files.extend([f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))]) | |
# List files in the AI wordcloud subdirectory | |
wordcloud_dir = os.path.join(directory, "wordclouds") | |
if os.path.isdir(wordcloud_dir): | |
wordcloud_files = [os.path.join("wordclouds", f) for f in os.listdir(wordcloud_dir) if os.path.isfile(os.path.join(wordcloud_dir, f))] | |
files.extend(wordcloud_files) | |
return files | |
except OSError as e: | |
#print(f"Pick a directory to list {directory}: {e}") | |
return [] | |
def display_file(filename): | |
if not filename or isinstance(filename, gr.components.Dropdown): | |
return None, None | |
try: | |
file_path = os.path.join(directory, filename) | |
if os.path.exists(file_path): | |
if filename.lower().endswith(('.png', '.jpg', '.jpeg', '.gif')): | |
return None, file_path | |
else: | |
with open(file_path, 'r') as file: | |
content = file.read() | |
return content, None | |
else: | |
print(f"File not found: {file_path}") | |
return None, None | |
except Exception as e: | |
print(f"Error displaying file {filename}: {e}") | |
return None, None | |
def refresh_file_list(request: gr.Request): | |
#checks for RAG dir and also refreshes list of files | |
set_user_directory(request) | |
file_choices = list_files(directory) | |
if os.path.isdir(os.path.join(directory, "chroma_storage")): | |
status = "🟢 RAG database successfully setup for Darnabot User" | |
else: | |
status = "🔴 RAG database needs to be set up for Darnabot User" | |
return gr.Dropdown(choices=file_choices), status | |
def update_display(filename): | |
if isinstance(filename, gr.components.Dropdown): | |
filename = filename.value | |
if not filename: | |
return gr.update(value="No file selected", visible=True), gr.update(value=None, visible=False) | |
content, image_path = display_file(filename) | |
if image_path: | |
return gr.update(value=None, visible=False), gr.update(value=image_path, visible=True) | |
elif content is not None: | |
return gr.update(value=content, visible=True), gr.update(value=None, visible=False) | |
else: | |
return gr.update(value="Error displaying file", visible=True), gr.update(value=None, visible=False) | |
##SYMPTOM LOGGER | |
# Create a thread-local storage | |
local = threading.local() | |
# Function to get and connect to relevant database connection for current thread | |
def get_db(): | |
if folderpath is None: | |
print("folderpath value is empty. Skipping. Please connect to your Darnahi Account.") | |
return None | |
try: | |
db_path = f"{folderpath}/summary/medical_records.db" | |
conn = sqlite3.connect(db_path) | |
return conn | |
except sqlite3.Error as e: | |
print(f"This is a demo version. Download to access all features: {e}") | |
return None | |
def close_db(): | |
if hasattr(local, "db") and local.db is not None: | |
local.db.close() | |
local.db = None | |
# Initialize the database | |
def init_db(request: gr.Request): | |
if folderpath is None: | |
print("folderpath value is empty. Skipping. Please connect to your Darnahi Account.") | |
return | |
global get_basic | |
get_basic(folderpath) | |
db = get_db() | |
if db is None: | |
return | |
try: | |
with db: | |
cursor = db.cursor() | |
cursor.execute(''' | |
CREATE TABLE IF NOT EXISTS records ( | |
id INTEGER PRIMARY KEY AUTOINCREMENT, | |
date TEXT, | |
age INTEGER, | |
sex TEXT, | |
symptom TEXT, | |
past_medical_history TEXT, | |
medications TEXT, | |
image BLOB, | |
comment TEXT | |
) | |
''') | |
print("Database initialized successfully.") | |
except sqlite3.Error as e: | |
print(f"This is a demo version. Download and run Darnahi: {e}") | |
finally: | |
if db: | |
db.close() | |
def get_basic(folderpath): | |
# This function gets chartit summary | |
with open(f'{folderpath}/summary/chart.json', 'r') as file: | |
json_data = json.load(file) | |
extracted_info = extract_lforms_data(json.dumps(json_data)) | |
json_output = json.dumps(extracted_info, indent=4) | |
write_text_to_pdf(folderpath, str(extracted_info)) | |
with open(f'{folderpath}/ocr_files/fhir_output.json', 'w', encoding='utf-8') as f: | |
f.write(json_output) | |
return extracted_info | |
#duplicate as AI module but seems to relevant to keep | |
def calculate_age(dob): | |
if dob is not None: | |
today = datetime.now() | |
born = datetime.strptime(dob, "%Y-%m-%d") | |
return today.year - born.year - ((today.month, today.day) < (born.month, born.day)) | |
return "Please update Chartit in you account" | |
#create PDF with container and margins | |
class PDF(FPDF): | |
def header(self): | |
self.set_font('Arial', 'B', 12) | |
self.cell(0, 10, 'Medical Record', 0, 1, 'C') | |
self.ln(10) | |
def footer(self): | |
self.set_y(-15) | |
self.set_font('Arial', 'I', 8) | |
self.cell(0, 10, f'Page {self.page_no()}/{{nb}}', 0, 0, 'C') | |
def create_pdf(record, image_data): | |
pdf = PDF() | |
pdf.alias_nb_pages() | |
pdf.add_page() | |
pdf.set_font("Arial", size=12) | |
pdf.set_auto_page_break(auto=True, margin=15) | |
# Set margin so that the comments dont go past margin | |
pdf.set_left_margin(10) | |
for key, value in record.items(): | |
if key != 'image' and key != 'comment': | |
pdf.cell(0, 10, txt=f"{key}: {value}", ln=True) | |
pdf.ln(10) | |
pdf.set_font("Arial", 'B', size=12) | |
pdf.cell(0, 10, txt="Comment:", ln=True) | |
pdf.set_font("Arial", size=12) | |
pdf.multi_cell(0, 10, txt=record['comment']) | |
if image_data: | |
try: | |
image_bytes = base64.b64decode(image_data) | |
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_file: | |
temp_file.write(image_bytes) | |
temp_file_path = temp_file.name | |
pdf.add_page() | |
pdf.image(temp_file_path, x=10, y=30, w=190) | |
os.unlink(temp_file_path) | |
except Exception as e: | |
pdf.ln(10) | |
pdf.cell(0, 10, txt=f"Error processing image: {e}", ln=True) | |
summary_dir = os.path.join(folderpath, "summary") | |
ocr_dir = os.path.join(folderpath, "ocr_files") | |
filename = os.path.join(summary_dir, f"record_{record['date'].replace(':', '-')}.pdf") | |
filename2 = os.path.join(ocr_dir, f"record_{record['date'].replace(':', '-')}.pdf") | |
pdf.output(filename) | |
pdf.output(filename2) | |
return filename, filename2 | |
def write_text_to_pdf(directory, text): | |
pdf_buffer = BytesIO() | |
c = canvas.Canvas(pdf_buffer, pagesize=letter) | |
text_object = c.beginText(72, 750) # Start 1 inch from top | |
for line in text.split('\n'): | |
text_object.textLine(line) | |
c.drawText(text_object) | |
c.save() | |
# Save the PDF | |
with open(f'{directory}/ocr_files/fhir_data.pdf', 'wb') as f: | |
f.write(pdf_buffer.getvalue()) | |
def submit_record(symptom, outputd, comment, file): | |
basic_info = get_basic(folderpath) | |
age = calculate_age(basic_info['date_of_birth']) | |
final_comment = outputd if outputd is not None else (comment if comment is not None else "") | |
record = { | |
'date': datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
'age': age, | |
'sex': basic_info['sex'], | |
'symptom': symptom, | |
'past_medical_history': json.dumps(basic_info['past_medical_history']), | |
'medications': json.dumps(basic_info['medications']), | |
'comment': final_comment | |
} | |
image_data = None | |
if file: | |
try: | |
# Read /encode file as base64 | |
with open(file.name, "rb") as image_file: | |
image_data = base64.b64encode(image_file.read()).decode('utf-8') | |
except Exception as e: | |
return f"🔴 Error processing image: {e}" | |
with get_db() as conn: | |
cursor = conn.cursor() | |
cursor.execute(''' | |
INSERT INTO records (date, age, sex, symptom, past_medical_history, medications, image, comment) | |
VALUES (?, ?, ?, ?, ?, ?, ?, ?) | |
''', (record['date'], record['age'], record['sex'], record['symptom'], record['past_medical_history'], record['medications'], image_data, final_comment)) | |
conn.commit() | |
pdf_filename = create_pdf(record, image_data) | |
return f"🟢 Record submitted successfully. {pdf_filename}" | |
def fetch_records(): | |
with get_db() as conn: | |
cursor = conn.cursor() | |
cursor.execute("SELECT id, date, symptom FROM records ORDER BY date DESC") | |
records = cursor.fetchall() | |
if not records: | |
return gr.Dropdown(choices=["No records available"], value="No records available") | |
choices = [f"{r[0]} - {r[1]} - {r[2]}" for r in records] | |
return gr.Dropdown(choices=choices, value=choices[0]) | |
def display_record(selected_record): | |
if not selected_record or selected_record == "No records available": | |
return "Please select a record to display", None | |
record_id = int(selected_record.split(' - ')[0]) | |
with get_db() as conn: | |
cursor = conn.cursor() | |
cursor.execute("SELECT * FROM records WHERE id = ?", (record_id,)) | |
record = cursor.fetchone() | |
if not record: | |
return "Record not found", None | |
columns = ['id', 'date', 'age', 'sex', 'symptom', 'past_medical_history', 'medications', 'image', 'comment'] | |
record_dict = {columns[i]: record[i] for i in range(len(columns))} | |
display_text = "\n".join([f"{k}: {v}" for k, v in record_dict.items() if k != 'image']) | |
if record_dict['image']: | |
try: | |
image_data = base64.b64decode(record_dict['image']) | |
img = Image.open(io.BytesIO(image_data)) | |
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_file: | |
img.save(temp_file.name, 'PNG') | |
temp_file_path = temp_file.name | |
return display_text, temp_file_path | |
except Exception as e: | |
return f"{display_text}\n\nError displaying image: {e}", None | |
else: | |
return display_text, None | |
#toggle visibility and connect to relevant DB | |
def toggle_visibility(choice, request: gr.Request): | |
set_user_health_files_directory(request) | |
close_db() | |
init_db(request) | |
if choice == "new": | |
return gr.Row.update(visible=True), gr.Row.update(visible=False) | |
else: | |
return gr.Row.update(visible=False), gr.Row.update(visible=True) | |
#Using ai to write a note | |
class HealthMotivator: | |
async def get_motivation(self, symptom_info): | |
messages = [ | |
{"role": "system", "content": "You are Darnabot, medical transcriber. Write a brief note with input and suggested first aid management only. Suggest doctor if complicated."}, | |
{"role": "user", "content": f"Generate a brief note input: {symptom_info} only. Do not make up information."}, | |
] | |
try: | |
OLLAMA_HOST = os.environ.get('OLLAMA_HOST', 'http://localhost:11434') | |
async for part in await AsyncClient(host=OLLAMA_HOST).chat(model=f'{model}', messages=messages, stream=True): | |
yield part['message']['content'] | |
except Exception as e: | |
yield f"Remember to take care of your health. Please see links below! Also download {model} from ollama. (Error: {str(e)})" | |
motivator = HealthMotivator() | |
async def symptom_note(symptom, symptom_info): | |
basic_info = get_basic(folderpath) | |
age = calculate_age(basic_info['date_of_birth']) | |
symptom_info = { | |
'date': datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
'age': age, | |
'sex': basic_info['sex'], | |
'symptom': symptom, | |
'past_medical_history': json.dumps(basic_info['past_medical_history']), | |
'medications': json.dumps(basic_info['medications']), | |
'comment': symptom_info | |
} | |
motivation = "See a doctor for Advice. This is only information. " | |
async for chunk in motivator.get_motivation(symptom_info): | |
motivation += chunk | |
yield motivation | |
#######################GRADIO UI | |
with gr.Blocks(theme='Taithrah/Minimal', css= "footer{display:none !important}") as demo: | |
with open('motivation.json', 'r') as file: | |
proverbs = json.load(file) | |
random_key = random.choice(list(proverbs.keys())) | |
proverb = proverbs[random_key] | |
gr.Markdown(f"""<div style='text-align: center; font-size: 1rem;'> | |
<i>{proverb}</i> | |
</div> | |
""") | |
with gr.Tab("DARNABOT"): | |
chatbot = gr.Chatbot(label="DARNAHI CONCIERGE 🛎️") | |
msg = gr.Textbox(label="Ask DARNABOT:", placeholder="How can I help?") | |
with gr.Row(): | |
btn1 = gr.Button("Ask") | |
Clear = gr.ClearButton([msg, chatbot]) | |
btn1.click(my_function, inputs=[msg, chatbot], outputs=[chatbot]) | |
Clear.click(clear_conversation, outputs=[msg, chatbot]) | |
with gr.Tab("RUN AI"): | |
gr.Markdown("## This section will run AI tools on your medical records and do the following\n 1. Calculate Age using Darnahi Chartit Data\n 2. Scan through your previously uploaded records once\n 3. Run Image recognition on it once\n 4. Generate Age and Sex based Recommendations using USPTF recommendations\n 5. Create summaries from your uploaded records that you can explore or download from file server tab\n 6. Create Wordclouds\n 7. Create structured and Unstructured RAG for Darnabot to use so as to tailor its answers using your uploaded chunked data. \n\n") | |
with gr.Row(): | |
fetch_button = gr.Button("Fetch Age and Sex") | |
with gr.Column(visible=False) as analysis_column: | |
deidentify_words = gr.Textbox(label="Enter information to deidentify", placeholder="names|email|address|phone") | |
analyze_button = gr.Button("Deidentify and Analyze") | |
output1 = gr.Textbox(label="Age and Sex") | |
output2 = gr.Textbox(label="Alert") | |
fetch_button.click( | |
fn=fetch_age_sex, | |
inputs=[], | |
outputs=[output1, output2, analysis_column, analyze_button] | |
) | |
analyze_button.click( | |
fn=analyze, | |
inputs=[deidentify_words], | |
outputs=[output2] | |
) | |
with gr.Accordion(label="EXPLORE AI FILES)", open=False): | |
with gr.Row(): | |
with gr.Row(): | |
file_list = gr.Dropdown(label="Select a file", choices=list_files(directory)) | |
refresh_button = gr.Button("Refresh List") | |
status_text = gr.Textbox(label="Database Status", interactive=False) | |
with gr.Row(): | |
display_area = gr.Textbox(label="Explore Content", visible=True) | |
display_area2 = gr.Image(label="Image", visible=True) | |
file_list.change( | |
fn=update_display, | |
inputs=[file_list], | |
outputs=[display_area, display_area2] | |
) | |
refresh_button.click( | |
fn=refresh_file_list, | |
inputs=[], | |
outputs=[file_list, status_text] | |
) | |
with gr.Accordion(label="OTHER INFORMATIONAL LINKS)", open=False): | |
gr.HTML(""" | |
<iframe src="https://www.uspreventiveservicestaskforce.org/webview/#!/" width="100%" height="580px"></iframe> | |
""") | |
gr.Markdown("## Are you up to date on Immunizations?\n See Immunization suggestions:") | |
gr.HTML(""" | |
<iframe src="https://www2a.cdc.gov/nip/adultimmsched/#print" | |
width="100%" height="500px"></iframe> | |
""") | |
with gr.Tab("⛨SYMPTOM LOGGER"): | |
with gr.Row(): | |
create_new = gr.Button("Create New") | |
fetch_previous = gr.Button("Fetch Previous") | |
with gr.Column(visible=False) as new_record_row: | |
with gr.Row(): | |
symptom = gr.Dropdown(["pain", "rash", "diarrhea", "discharge", "wound", "other"], label="Symptom") | |
comment = gr.Textbox(label="Details", placeholder="Rash since 2 days with discharge") | |
with gr.Row(): | |
file = gr.File(label="Attach Image (optional)") | |
result = gr.Textbox(label="Alert") | |
outputd = gr.Markdown(label="Darnabot:") | |
with gr.Row(): | |
btnw = gr.Button("GENERATE") | |
submit_btn = gr.Button("Save") | |
btnw.click(symptom_note, inputs=(symptom, comment), outputs=[outputd]) | |
with gr.Column(visible=False) as explore_records_row: | |
with gr.Row(): | |
records_dropdown = gr.Dropdown(label="Select Record", choices=["No records available"]) | |
with gr.Column(): | |
fetch_btn = gr.Button("Refresh List") | |
display_btn = gr.Button("Display Selected Record") | |
with gr.Row(): | |
record_display = gr.Textbox(label="Record Details") | |
image_display = gr.Image(label="Attached Image") | |
create_new.click( | |
toggle_visibility, | |
inputs=gr.Text(value="new", visible=False), | |
outputs=[new_record_row, explore_records_row] | |
) | |
fetch_previous.click( | |
toggle_visibility, | |
inputs=gr.Text(value="previous", visible=False), | |
outputs=[new_record_row, explore_records_row] | |
) | |
submit_btn.click(submit_record, inputs=[symptom, outputd, comment, file], outputs=result) | |
fetch_btn.click(fetch_records, outputs=records_dropdown) | |
display_btn.click(display_record, inputs=[records_dropdown], outputs=[record_display, image_display]) | |
if __name__ == "__main__": | |
demo.launch() | |
#demo.launch(server_name='0.0.0.0', server_port=3012, share=True) | |