Spaces:
Running
Running
import numpy as np | |
import pandas as pd | |
import plotly.graph_objects as go | |
from umap import UMAP | |
from typing import List, Union | |
# Shamelessly taken and adapted from Bertopic original implementation here (Maarten Grootendorst): https://github.com/MaartenGr/BERTopic/blob/master/bertopic/plotting/_documents.py | |
def visualize_documents_custom(topic_model, | |
docs: List[str], | |
hover_labels: List[str], | |
topics: List[int] = None, | |
embeddings: np.ndarray = None, | |
reduced_embeddings: np.ndarray = None, | |
sample: float = None, | |
hide_annotations: bool = False, | |
hide_document_hover: bool = False, | |
custom_labels: Union[bool, str] = False, | |
title: str = "<b>Documents and Topics</b>", | |
width: int = 1200, | |
height: int = 750): | |
""" Visualize documents and their topics in 2D | |
Arguments: | |
topic_model: A fitted BERTopic instance. | |
docs: The documents you used when calling either `fit` or `fit_transform` | |
topics: A selection of topics to visualize. | |
Not to be confused with the topics that you get from `.fit_transform`. | |
For example, if you want to visualize only topics 1 through 5: | |
`topics = [1, 2, 3, 4, 5]`. | |
embeddings: The embeddings of all documents in `docs`. | |
reduced_embeddings: The 2D reduced embeddings of all documents in `docs`. | |
sample: The percentage of documents in each topic that you would like to keep. | |
Value can be between 0 and 1. Setting this value to, for example, | |
0.1 (10% of documents in each topic) makes it easier to visualize | |
millions of documents as a subset is chosen. | |
hide_annotations: Hide the names of the traces on top of each cluster. | |
hide_document_hover: Hide the content of the documents when hovering over | |
specific points. Helps to speed up generation of visualization. | |
custom_labels: If bool, whether to use custom topic labels that were defined using | |
`topic_model.set_topic_labels`. | |
If `str`, it uses labels from other aspects, e.g., "Aspect1". | |
title: Title of the plot. | |
width: The width of the figure. | |
height: The height of the figure. | |
Examples: | |
To visualize the topics simply run: | |
```python | |
topic_model.visualize_documents(docs) | |
``` | |
Do note that this re-calculates the embeddings and reduces them to 2D. | |
The advised and prefered pipeline for using this function is as follows: | |
```python | |
from sklearn.datasets import fetch_20newsgroups | |
from sentence_transformers import SentenceTransformer | |
from bertopic import BERTopic | |
from umap import UMAP | |
# Prepare embeddings | |
docs = fetch_20newsgroups(subset='all', remove=('headers', 'footers', 'quotes'))['data'] | |
sentence_model = SentenceTransformer("all-MiniLM-L6-v2") | |
embeddings = sentence_model.encode(docs, show_progress_bar=False) | |
# Train BERTopic | |
topic_model = BERTopic().fit(docs, embeddings) | |
# Reduce dimensionality of embeddings, this step is optional | |
# reduced_embeddings = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit_transform(embeddings) | |
# Run the visualization with the original embeddings | |
topic_model.visualize_documents(docs, embeddings=embeddings) | |
# Or, if you have reduced the original embeddings already: | |
topic_model.visualize_documents(docs, reduced_embeddings=reduced_embeddings) | |
``` | |
Or if you want to save the resulting figure: | |
```python | |
fig = topic_model.visualize_documents(docs, reduced_embeddings=reduced_embeddings) | |
fig.write_html("path/to/file.html") | |
``` | |
<iframe src="../../getting_started/visualization/documents.html" | |
style="width:1000px; height: 800px; border: 0px;""></iframe> | |
""" | |
topic_per_doc = topic_model.topics_ | |
# Add <br> tags to hover labels to get them to appear on multiple lines | |
def wrap_by_word(s, n): | |
'''returns a string up to 300 words where \\n is inserted between every n words''' | |
a = s.split()[:300] | |
ret = '' | |
for i in range(0, len(a), n): | |
ret += ' '.join(a[i:i+n]) + '<br>' | |
return ret | |
# Apply the function to every element in the list | |
hover_labels = [wrap_by_word(s, n=20) for s in hover_labels] | |
# Sample the data to optimize for visualization and dimensionality reduction | |
if sample is None or sample > 1: | |
sample = 1 | |
indices = [] | |
for topic in set(topic_per_doc): | |
s = np.where(np.array(topic_per_doc) == topic)[0] | |
size = len(s) if len(s) < 100 else int(len(s) * sample) | |
indices.extend(np.random.choice(s, size=size, replace=False)) | |
indices = np.array(indices) | |
df = pd.DataFrame({"topic": np.array(topic_per_doc)[indices]}) | |
df["doc"] = [docs[index] for index in indices] | |
df["hover_labels"] = [hover_labels[index] for index in indices] | |
df["topic"] = [topic_per_doc[index] for index in indices] | |
# Extract embeddings if not already done | |
if sample is None: | |
if embeddings is None and reduced_embeddings is None: | |
embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document") | |
else: | |
embeddings_to_reduce = embeddings | |
else: | |
if embeddings is not None: | |
embeddings_to_reduce = embeddings[indices] | |
elif embeddings is None and reduced_embeddings is None: | |
embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document") | |
# Reduce input embeddings | |
if reduced_embeddings is None: | |
umap_model = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit(embeddings_to_reduce) | |
embeddings_2d = umap_model.embedding_ | |
elif sample is not None and reduced_embeddings is not None: | |
embeddings_2d = reduced_embeddings[indices] | |
elif sample is None and reduced_embeddings is not None: | |
embeddings_2d = reduced_embeddings | |
unique_topics = set(topic_per_doc) | |
if topics is None: | |
topics = unique_topics | |
# Combine data | |
df["x"] = embeddings_2d[:, 0] | |
df["y"] = embeddings_2d[:, 1] | |
# Prepare text and names | |
if isinstance(custom_labels, str): | |
names = [[[str(topic), None]] + topic_model.topic_aspects_[custom_labels][topic] for topic in unique_topics] | |
names = ["_".join([label[0] for label in labels[:4]]) for labels in names] | |
names = [label if len(label) < 30 else label[:27] + "..." for label in names] | |
elif topic_model.custom_labels_ is not None and custom_labels: | |
names = [topic_model.custom_labels_[topic + topic_model._outliers] for topic in unique_topics] | |
else: | |
names = [f"{topic}_" + "_".join([word for word, value in topic_model.get_topic(topic)][:3]) for topic in unique_topics] | |
# Visualize | |
fig = go.Figure() | |
# Outliers and non-selected topics | |
non_selected_topics = set(unique_topics).difference(topics) | |
if len(non_selected_topics) == 0: | |
non_selected_topics = [-1] | |
selection = df.loc[df.topic.isin(non_selected_topics), :] | |
selection["text"] = "" | |
selection.loc[len(selection), :] = [None, None, None, selection.x.mean(), selection.y.mean(), "Other documents"] | |
fig.add_trace( | |
go.Scattergl( | |
x=selection.x, | |
y=selection.y, | |
hovertext=selection.hover_labels if not hide_document_hover else None, | |
hoverinfo="text", | |
mode='markers+text', | |
name="other", | |
showlegend=False, | |
marker=dict(color='#CFD8DC', size=5, opacity=0.5), | |
hoverlabel=dict(align='left') | |
) | |
) | |
# Selected topics | |
for name, topic in zip(names, unique_topics): | |
if topic in topics and topic != -1: | |
selection = df.loc[df.topic == topic, :] | |
selection["text"] = "" | |
if not hide_annotations: | |
selection.loc[len(selection), :] = [None, None, selection.x.mean(), selection.y.mean(), name] | |
fig.add_trace( | |
go.Scattergl( | |
x=selection.x, | |
y=selection.y, | |
hovertext=selection.hover_labels if not hide_document_hover else None, | |
hoverinfo="text", | |
text=selection.text, | |
mode='markers+text', | |
name=name, | |
textfont=dict( | |
size=12, | |
), | |
marker=dict(size=5, opacity=0.5), | |
hoverlabel=dict(align='left') | |
)) | |
# Add grid in a 'plus' shape | |
x_range = (df.x.min() - abs((df.x.min()) * .15), df.x.max() + abs((df.x.max()) * .15)) | |
y_range = (df.y.min() - abs((df.y.min()) * .15), df.y.max() + abs((df.y.max()) * .15)) | |
fig.add_shape(type="line", | |
x0=sum(x_range) / 2, y0=y_range[0], x1=sum(x_range) / 2, y1=y_range[1], | |
line=dict(color="#CFD8DC", width=2)) | |
fig.add_shape(type="line", | |
x0=x_range[0], y0=sum(y_range) / 2, x1=x_range[1], y1=sum(y_range) / 2, | |
line=dict(color="#9E9E9E", width=2)) | |
fig.add_annotation(x=x_range[0], y=sum(y_range) / 2, text="D1", showarrow=False, yshift=10) | |
fig.add_annotation(y=y_range[1], x=sum(x_range) / 2, text="D2", showarrow=False, xshift=10) | |
# Stylize layout | |
fig.update_layout( | |
template="simple_white", | |
title={ | |
'text': f"{title}", | |
'x': 0.5, | |
'xanchor': 'center', | |
'yanchor': 'top', | |
'font': dict( | |
size=22, | |
color="Black") | |
}, | |
hoverlabel_align = 'left', | |
width=width, | |
height=height | |
) | |
fig.update_xaxes(visible=False) | |
fig.update_yaxes(visible=False) | |
return fig | |