import numpy as np import pandas as pd import plotly.graph_objects as go from umap import UMAP from typing import List, Union # Shamelessly taken and adapted from Bertopic original implementation here (Maarten Grootendorst): https://github.com/MaartenGr/BERTopic/blob/master/bertopic/plotting/_documents.py def visualize_documents_custom(topic_model, docs: List[str], hover_labels: List[str], topics: List[int] = None, embeddings: np.ndarray = None, reduced_embeddings: np.ndarray = None, sample: float = None, hide_annotations: bool = False, hide_document_hover: bool = False, custom_labels: Union[bool, str] = False, title: str = "Documents and Topics", width: int = 1200, height: int = 750): """ Visualize documents and their topics in 2D Arguments: topic_model: A fitted BERTopic instance. docs: The documents you used when calling either `fit` or `fit_transform` topics: A selection of topics to visualize. Not to be confused with the topics that you get from `.fit_transform`. For example, if you want to visualize only topics 1 through 5: `topics = [1, 2, 3, 4, 5]`. embeddings: The embeddings of all documents in `docs`. reduced_embeddings: The 2D reduced embeddings of all documents in `docs`. sample: The percentage of documents in each topic that you would like to keep. Value can be between 0 and 1. Setting this value to, for example, 0.1 (10% of documents in each topic) makes it easier to visualize millions of documents as a subset is chosen. hide_annotations: Hide the names of the traces on top of each cluster. hide_document_hover: Hide the content of the documents when hovering over specific points. Helps to speed up generation of visualization. custom_labels: If bool, whether to use custom topic labels that were defined using `topic_model.set_topic_labels`. If `str`, it uses labels from other aspects, e.g., "Aspect1". title: Title of the plot. width: The width of the figure. height: The height of the figure. Examples: To visualize the topics simply run: ```python topic_model.visualize_documents(docs) ``` Do note that this re-calculates the embeddings and reduces them to 2D. The advised and prefered pipeline for using this function is as follows: ```python from sklearn.datasets import fetch_20newsgroups from sentence_transformers import SentenceTransformer from bertopic import BERTopic from umap import UMAP # Prepare embeddings docs = fetch_20newsgroups(subset='all', remove=('headers', 'footers', 'quotes'))['data'] sentence_model = SentenceTransformer("all-MiniLM-L6-v2") embeddings = sentence_model.encode(docs, show_progress_bar=False) # Train BERTopic topic_model = BERTopic().fit(docs, embeddings) # Reduce dimensionality of embeddings, this step is optional # reduced_embeddings = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit_transform(embeddings) # Run the visualization with the original embeddings topic_model.visualize_documents(docs, embeddings=embeddings) # Or, if you have reduced the original embeddings already: topic_model.visualize_documents(docs, reduced_embeddings=reduced_embeddings) ``` Or if you want to save the resulting figure: ```python fig = topic_model.visualize_documents(docs, reduced_embeddings=reduced_embeddings) fig.write_html("path/to/file.html") ``` """ topic_per_doc = topic_model.topics_ # Add
tags to hover labels to get them to appear on multiple lines def wrap_by_word(s, n): '''returns a string up to 300 words where \\n is inserted between every n words''' a = s.split()[:300] ret = '' for i in range(0, len(a), n): ret += ' '.join(a[i:i+n]) + '
' return ret # Apply the function to every element in the list hover_labels = [wrap_by_word(s, n=20) for s in hover_labels] # Sample the data to optimize for visualization and dimensionality reduction if sample is None or sample > 1: sample = 1 indices = [] for topic in set(topic_per_doc): s = np.where(np.array(topic_per_doc) == topic)[0] size = len(s) if len(s) < 100 else int(len(s) * sample) indices.extend(np.random.choice(s, size=size, replace=False)) indices = np.array(indices) df = pd.DataFrame({"topic": np.array(topic_per_doc)[indices]}) df["doc"] = [docs[index] for index in indices] df["hover_labels"] = [hover_labels[index] for index in indices] df["topic"] = [topic_per_doc[index] for index in indices] # Extract embeddings if not already done if sample is None: if embeddings is None and reduced_embeddings is None: embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document") else: embeddings_to_reduce = embeddings else: if embeddings is not None: embeddings_to_reduce = embeddings[indices] elif embeddings is None and reduced_embeddings is None: embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document") # Reduce input embeddings if reduced_embeddings is None: umap_model = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit(embeddings_to_reduce) embeddings_2d = umap_model.embedding_ elif sample is not None and reduced_embeddings is not None: embeddings_2d = reduced_embeddings[indices] elif sample is None and reduced_embeddings is not None: embeddings_2d = reduced_embeddings unique_topics = set(topic_per_doc) if topics is None: topics = unique_topics # Combine data df["x"] = embeddings_2d[:, 0] df["y"] = embeddings_2d[:, 1] # Prepare text and names if isinstance(custom_labels, str): names = [[[str(topic), None]] + topic_model.topic_aspects_[custom_labels][topic] for topic in unique_topics] names = ["_".join([label[0] for label in labels[:4]]) for labels in names] names = [label if len(label) < 30 else label[:27] + "..." for label in names] elif topic_model.custom_labels_ is not None and custom_labels: names = [topic_model.custom_labels_[topic + topic_model._outliers] for topic in unique_topics] else: names = [f"{topic}_" + "_".join([word for word, value in topic_model.get_topic(topic)][:3]) for topic in unique_topics] # Visualize fig = go.Figure() # Outliers and non-selected topics non_selected_topics = set(unique_topics).difference(topics) if len(non_selected_topics) == 0: non_selected_topics = [-1] selection = df.loc[df.topic.isin(non_selected_topics), :] selection["text"] = "" selection.loc[len(selection), :] = [None, None, None, selection.x.mean(), selection.y.mean(), "Other documents"] fig.add_trace( go.Scattergl( x=selection.x, y=selection.y, hovertext=selection.hover_labels if not hide_document_hover else None, hoverinfo="text", mode='markers+text', name="other", showlegend=False, marker=dict(color='#CFD8DC', size=5, opacity=0.5), hoverlabel=dict(align='left') ) ) # Selected topics for name, topic in zip(names, unique_topics): if topic in topics and topic != -1: selection = df.loc[df.topic == topic, :] selection["text"] = "" if not hide_annotations: selection.loc[len(selection), :] = [None, None, selection.x.mean(), selection.y.mean(), name] fig.add_trace( go.Scattergl( x=selection.x, y=selection.y, hovertext=selection.hover_labels if not hide_document_hover else None, hoverinfo="text", text=selection.text, mode='markers+text', name=name, textfont=dict( size=12, ), marker=dict(size=5, opacity=0.5), hoverlabel=dict(align='left') )) # Add grid in a 'plus' shape x_range = (df.x.min() - abs((df.x.min()) * .15), df.x.max() + abs((df.x.max()) * .15)) y_range = (df.y.min() - abs((df.y.min()) * .15), df.y.max() + abs((df.y.max()) * .15)) fig.add_shape(type="line", x0=sum(x_range) / 2, y0=y_range[0], x1=sum(x_range) / 2, y1=y_range[1], line=dict(color="#CFD8DC", width=2)) fig.add_shape(type="line", x0=x_range[0], y0=sum(y_range) / 2, x1=x_range[1], y1=sum(y_range) / 2, line=dict(color="#9E9E9E", width=2)) fig.add_annotation(x=x_range[0], y=sum(y_range) / 2, text="D1", showarrow=False, yshift=10) fig.add_annotation(y=y_range[1], x=sum(x_range) / 2, text="D2", showarrow=False, xshift=10) # Stylize layout fig.update_layout( template="simple_white", title={ 'text': f"{title}", 'x': 0.5, 'xanchor': 'center', 'yanchor': 'top', 'font': dict( size=22, color="Black") }, hoverlabel_align = 'left', width=width, height=height ) fig.update_xaxes(visible=False) fig.update_yaxes(visible=False) return fig