huamnifierWithSimpleGrammer / utils /preprocess_data.py
“[shujaatalishariati]”
Initial commit for Gradio app with GECToR
847e3e1
raw
history blame
18.4 kB
import argparse
import os
from difflib import SequenceMatcher
import Levenshtein
import numpy as np
from tqdm import tqdm
from helpers import write_lines, read_parallel_lines, encode_verb_form, \
apply_reverse_transformation, SEQ_DELIMETERS, START_TOKEN
def perfect_align(t, T, insertions_allowed=0,
cost_function=Levenshtein.distance):
# dp[i, j, k] is a minimal cost of matching first `i` tokens of `t` with
# first `j` tokens of `T`, after making `k` insertions after last match of
# token from `t`. In other words t[:i] aligned with T[:j].
# Initialize with INFINITY (unknown)
shape = (len(t) + 1, len(T) + 1, insertions_allowed + 1)
dp = np.ones(shape, dtype=int) * int(1e9)
come_from = np.ones(shape, dtype=int) * int(1e9)
come_from_ins = np.ones(shape, dtype=int) * int(1e9)
dp[0, 0, 0] = 0 # The only known starting point. Nothing matched to nothing.
for i in range(len(t) + 1): # Go inclusive
for j in range(len(T) + 1): # Go inclusive
for q in range(insertions_allowed + 1): # Go inclusive
if i < len(t):
# Given matched sequence of t[:i] and T[:j], match token
# t[i] with following tokens T[j:k].
for k in range(j, len(T) + 1):
transform = \
apply_transformation(t[i], ' '.join(T[j:k]))
if transform:
cost = 0
else:
cost = cost_function(t[i], ' '.join(T[j:k]))
current = dp[i, j, q] + cost
if dp[i + 1, k, 0] > current:
dp[i + 1, k, 0] = current
come_from[i + 1, k, 0] = j
come_from_ins[i + 1, k, 0] = q
if q < insertions_allowed:
# Given matched sequence of t[:i] and T[:j], create
# insertion with following tokens T[j:k].
for k in range(j, len(T) + 1):
cost = len(' '.join(T[j:k]))
current = dp[i, j, q] + cost
if dp[i, k, q + 1] > current:
dp[i, k, q + 1] = current
come_from[i, k, q + 1] = j
come_from_ins[i, k, q + 1] = q
# Solution is in the dp[len(t), len(T), *]. Backtracking from there.
alignment = []
i = len(t)
j = len(T)
q = dp[i, j, :].argmin()
while i > 0 or q > 0:
is_insert = (come_from_ins[i, j, q] != q) and (q != 0)
j, k, q = come_from[i, j, q], j, come_from_ins[i, j, q]
if not is_insert:
i -= 1
if is_insert:
alignment.append(['INSERT', T[j:k], (i, i)])
else:
alignment.append([f'REPLACE_{t[i]}', T[j:k], (i, i + 1)])
assert j == 0
return dp[len(t), len(T)].min(), list(reversed(alignment))
def _split(token):
if not token:
return []
parts = token.split()
return parts or [token]
def apply_merge_transformation(source_tokens, target_words, shift_idx):
edits = []
if len(source_tokens) > 1 and len(target_words) == 1:
# check merge
transform = check_merge(source_tokens, target_words)
if transform:
for i in range(len(source_tokens) - 1):
edits.append([(shift_idx + i, shift_idx + i + 1), transform])
return edits
if len(source_tokens) == len(target_words) == 2:
# check swap
transform = check_swap(source_tokens, target_words)
if transform:
edits.append([(shift_idx, shift_idx + 1), transform])
return edits
def is_sent_ok(sent, delimeters=SEQ_DELIMETERS):
for del_val in delimeters.values():
if del_val in sent and del_val != delimeters["tokens"]:
return False
return True
def check_casetype(source_token, target_token):
if source_token.lower() != target_token.lower():
return None
if source_token.lower() == target_token:
return "$TRANSFORM_CASE_LOWER"
elif source_token.capitalize() == target_token:
return "$TRANSFORM_CASE_CAPITAL"
elif source_token.upper() == target_token:
return "$TRANSFORM_CASE_UPPER"
elif source_token[1:].capitalize() == target_token[1:] and source_token[0] == target_token[0]:
return "$TRANSFORM_CASE_CAPITAL_1"
elif source_token[:-1].upper() == target_token[:-1] and source_token[-1] == target_token[-1]:
return "$TRANSFORM_CASE_UPPER_-1"
else:
return None
def check_equal(source_token, target_token):
if source_token == target_token:
return "$KEEP"
else:
return None
def check_split(source_token, target_tokens):
if source_token.split("-") == target_tokens:
return "$TRANSFORM_SPLIT_HYPHEN"
else:
return None
def check_merge(source_tokens, target_tokens):
if "".join(source_tokens) == "".join(target_tokens):
return "$MERGE_SPACE"
elif "-".join(source_tokens) == "-".join(target_tokens):
return "$MERGE_HYPHEN"
else:
return None
def check_swap(source_tokens, target_tokens):
if source_tokens == [x for x in reversed(target_tokens)]:
return "$MERGE_SWAP"
else:
return None
def check_plural(source_token, target_token):
if source_token.endswith("s") and source_token[:-1] == target_token:
return "$TRANSFORM_AGREEMENT_SINGULAR"
elif target_token.endswith("s") and source_token == target_token[:-1]:
return "$TRANSFORM_AGREEMENT_PLURAL"
else:
return None
def check_verb(source_token, target_token):
encoding = encode_verb_form(source_token, target_token)
if encoding:
return f"$TRANSFORM_VERB_{encoding}"
else:
return None
def apply_transformation(source_token, target_token):
target_tokens = target_token.split()
if len(target_tokens) > 1:
# check split
transform = check_split(source_token, target_tokens)
if transform:
return transform
checks = [check_equal, check_casetype, check_verb, check_plural]
for check in checks:
transform = check(source_token, target_token)
if transform:
return transform
return None
def align_sequences(source_sent, target_sent):
# check if sent is OK
if not is_sent_ok(source_sent) or not is_sent_ok(target_sent):
return None
source_tokens = source_sent.split()
target_tokens = target_sent.split()
matcher = SequenceMatcher(None, source_tokens, target_tokens)
diffs = list(matcher.get_opcodes())
all_edits = []
for diff in diffs:
tag, i1, i2, j1, j2 = diff
source_part = _split(" ".join(source_tokens[i1:i2]))
target_part = _split(" ".join(target_tokens[j1:j2]))
if tag == 'equal':
continue
elif tag == 'delete':
# delete all words separatly
for j in range(i2 - i1):
edit = [(i1 + j, i1 + j + 1), '$DELETE']
all_edits.append(edit)
elif tag == 'insert':
# append to the previous word
for target_token in target_part:
edit = ((i1 - 1, i1), f"$APPEND_{target_token}")
all_edits.append(edit)
else:
# check merge first of all
edits = apply_merge_transformation(source_part, target_part,
shift_idx=i1)
if edits:
all_edits.extend(edits)
continue
# normalize alignments if need (make them singleton)
_, alignments = perfect_align(source_part, target_part,
insertions_allowed=0)
for alignment in alignments:
new_shift = alignment[2][0]
edits = convert_alignments_into_edits(alignment,
shift_idx=i1 + new_shift)
all_edits.extend(edits)
# get labels
labels = convert_edits_into_labels(source_tokens, all_edits)
# match tags to source tokens
sent_with_tags = add_labels_to_the_tokens(source_tokens, labels)
return sent_with_tags
def convert_edits_into_labels(source_tokens, all_edits):
# make sure that edits are flat
flat_edits = []
for edit in all_edits:
(start, end), edit_operations = edit
if isinstance(edit_operations, list):
for operation in edit_operations:
new_edit = [(start, end), operation]
flat_edits.append(new_edit)
elif isinstance(edit_operations, str):
flat_edits.append(edit)
else:
raise Exception("Unknown operation type")
all_edits = flat_edits[:]
labels = []
total_labels = len(source_tokens) + 1
if not all_edits:
labels = [["$KEEP"] for x in range(total_labels)]
else:
for i in range(total_labels):
edit_operations = [x[1] for x in all_edits if x[0][0] == i - 1
and x[0][1] == i]
if not edit_operations:
labels.append(["$KEEP"])
else:
labels.append(edit_operations)
return labels
def convert_alignments_into_edits(alignment, shift_idx):
edits = []
action, target_tokens, new_idx = alignment
source_token = action.replace("REPLACE_", "")
# check if delete
if not target_tokens:
edit = [(shift_idx, 1 + shift_idx), "$DELETE"]
return [edit]
# check splits
for i in range(1, len(target_tokens)):
target_token = " ".join(target_tokens[:i + 1])
transform = apply_transformation(source_token, target_token)
if transform:
edit = [(shift_idx, shift_idx + 1), transform]
edits.append(edit)
target_tokens = target_tokens[i + 1:]
for target in target_tokens:
edits.append([(shift_idx, shift_idx + 1), f"$APPEND_{target}"])
return edits
transform_costs = []
transforms = []
for target_token in target_tokens:
transform = apply_transformation(source_token, target_token)
if transform:
cost = 0
transforms.append(transform)
else:
cost = Levenshtein.distance(source_token, target_token)
transforms.append(None)
transform_costs.append(cost)
min_cost_idx = transform_costs.index(min(transform_costs))
# append to the previous word
for i in range(0, min_cost_idx):
target = target_tokens[i]
edit = [(shift_idx - 1, shift_idx), f"$APPEND_{target}"]
edits.append(edit)
# replace/transform target word
transform = transforms[min_cost_idx]
target = transform if transform is not None \
else f"$REPLACE_{target_tokens[min_cost_idx]}"
edit = [(shift_idx, 1 + shift_idx), target]
edits.append(edit)
# append to this word
for i in range(min_cost_idx + 1, len(target_tokens)):
target = target_tokens[i]
edit = [(shift_idx, 1 + shift_idx), f"$APPEND_{target}"]
edits.append(edit)
return edits
def add_labels_to_the_tokens(source_tokens, labels, delimeters=SEQ_DELIMETERS):
tokens_with_all_tags = []
source_tokens_with_start = [START_TOKEN] + source_tokens
for token, label_list in zip(source_tokens_with_start, labels):
all_tags = delimeters['operations'].join(label_list)
comb_record = token + delimeters['labels'] + all_tags
tokens_with_all_tags.append(comb_record)
return delimeters['tokens'].join(tokens_with_all_tags)
def convert_data_from_raw_files(source_file, target_file, output_file, chunk_size):
tagged = []
source_data, target_data = read_parallel_lines(source_file, target_file)
print(f"The size of raw dataset is {len(source_data)}")
cnt_total, cnt_all, cnt_tp = 0, 0, 0
for source_sent, target_sent in tqdm(zip(source_data, target_data)):
try:
aligned_sent = align_sequences(source_sent, target_sent)
except Exception:
aligned_sent = align_sequences(source_sent, target_sent)
if source_sent != target_sent:
cnt_tp += 1
alignments = [aligned_sent]
cnt_all += len(alignments)
try:
check_sent = convert_tagged_line(aligned_sent)
except Exception:
# debug mode
aligned_sent = align_sequences(source_sent, target_sent)
check_sent = convert_tagged_line(aligned_sent)
if "".join(check_sent.split()) != "".join(
target_sent.split()):
# do it again for debugging
aligned_sent = align_sequences(source_sent, target_sent)
check_sent = convert_tagged_line(aligned_sent)
print(f"Incorrect pair: \n{target_sent}\n{check_sent}")
continue
if alignments:
cnt_total += len(alignments)
tagged.extend(alignments)
if len(tagged) > chunk_size:
write_lines(output_file, tagged, mode='a')
tagged = []
print(f"Overall extracted {cnt_total}. "
f"Original TP {cnt_tp}."
f" Original TN {cnt_all - cnt_tp}")
if tagged:
write_lines(output_file, tagged, 'a')
def convert_labels_into_edits(labels):
all_edits = []
for i, label_list in enumerate(labels):
if label_list == ["$KEEP"]:
continue
else:
edit = [(i - 1, i), label_list]
all_edits.append(edit)
return all_edits
def get_target_sent_by_levels(source_tokens, labels):
relevant_edits = convert_labels_into_edits(labels)
target_tokens = source_tokens[:]
leveled_target_tokens = {}
if not relevant_edits:
target_sentence = " ".join(target_tokens)
return leveled_target_tokens, target_sentence
max_level = max([len(x[1]) for x in relevant_edits])
for level in range(max_level):
rest_edits = []
shift_idx = 0
for edits in relevant_edits:
(start, end), label_list = edits
label = label_list[0]
target_pos = start + shift_idx
source_token = target_tokens[target_pos] if target_pos >= 0 else START_TOKEN
if label == "$DELETE":
del target_tokens[target_pos]
shift_idx -= 1
elif label.startswith("$APPEND_"):
word = label.replace("$APPEND_", "")
target_tokens[target_pos + 1: target_pos + 1] = [word]
shift_idx += 1
elif label.startswith("$REPLACE_"):
word = label.replace("$REPLACE_", "")
target_tokens[target_pos] = word
elif label.startswith("$TRANSFORM"):
word = apply_reverse_transformation(source_token, label)
if word is None:
word = source_token
target_tokens[target_pos] = word
elif label.startswith("$MERGE_"):
# apply merge only on last stage
if level == (max_level - 1):
target_tokens[target_pos + 1: target_pos + 1] = [label]
shift_idx += 1
else:
rest_edit = [(start + shift_idx, end + shift_idx), [label]]
rest_edits.append(rest_edit)
rest_labels = label_list[1:]
if rest_labels:
rest_edit = [(start + shift_idx, end + shift_idx), rest_labels]
rest_edits.append(rest_edit)
leveled_tokens = target_tokens[:]
# update next step
relevant_edits = rest_edits[:]
if level == (max_level - 1):
leveled_tokens = replace_merge_transforms(leveled_tokens)
leveled_labels = convert_edits_into_labels(leveled_tokens,
relevant_edits)
leveled_target_tokens[level + 1] = {"tokens": leveled_tokens,
"labels": leveled_labels}
target_sentence = " ".join(leveled_target_tokens[max_level]["tokens"])
return leveled_target_tokens, target_sentence
def replace_merge_transforms(tokens):
if all(not x.startswith("$MERGE_") for x in tokens):
return tokens
target_tokens = tokens[:]
allowed_range = (1, len(tokens) - 1)
for i in range(len(tokens)):
target_token = tokens[i]
if target_token.startswith("$MERGE"):
if target_token.startswith("$MERGE_SWAP") and i in allowed_range:
target_tokens[i - 1] = tokens[i + 1]
target_tokens[i + 1] = tokens[i - 1]
target_tokens[i: i + 1] = []
target_line = " ".join(target_tokens)
target_line = target_line.replace(" $MERGE_HYPHEN ", "-")
target_line = target_line.replace(" $MERGE_SPACE ", "")
return target_line.split()
def convert_tagged_line(line, delimeters=SEQ_DELIMETERS):
label_del = delimeters['labels']
source_tokens = [x.split(label_del)[0]
for x in line.split(delimeters['tokens'])][1:]
labels = [x.split(label_del)[1].split(delimeters['operations'])
for x in line.split(delimeters['tokens'])]
assert len(source_tokens) + 1 == len(labels)
levels_dict, target_line = get_target_sent_by_levels(source_tokens, labels)
return target_line
def main(args):
convert_data_from_raw_files(args.source, args.target, args.output_file, args.chunk_size)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-s', '--source',
help='Path to the source file',
required=True)
parser.add_argument('-t', '--target',
help='Path to the target file',
required=True)
parser.add_argument('-o', '--output_file',
help='Path to the output file',
required=True)
parser.add_argument('--chunk_size',
type=int,
help='Dump each chunk size.',
default=1000000)
args = parser.parse_args()
main(args)