sashank812's picture
Update app.py
b6fc257 verified
import re
import docx
from bs4 import BeautifulSoup
from PyPDF2 import PdfReader
from sentence_transformers import SentenceTransformer, util
import warnings
import hdbscan
import numpy as np
import seaborn as sns
from transformers import BartTokenizer, BartForConditionalGeneration, BartConfig
import torch
from transformers import LongformerTokenizer, EncoderDecoderModel
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize, sent_tokenize
from sklearn.feature_extraction.text import TfidfVectorizer
import matplotlib.pyplot as plt
nltk.download("punkt_tab")
nltk.download("stopwords")
nltk.download("punkt")
import matplotlib.pyplot as plt
import scipy.cluster.hierarchy as sch
from sklearn.metrics.pairwise import cosine_similarity
import plotly.express as px
from sklearn.manifold import TSNE
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import pandas as pd
import json
import xml.etree.ElementTree as ET
import os
import warnings
import pptx
import io
from PIL import Image
warnings.filterwarnings("ignore")
def clean_text(text):
text = re.sub(r"http\S+|www\S+|https\S+", "", text)
text = re.sub(r"\s+", " ", text).strip()
text = re.sub(r"[^\w\s,.]", "", text)
return text
def extract_and_clean_text(file_path):
text = ""
if file_path.endswith(".docx"):
doc = docx.Document(file_path)
for paragraph in doc.paragraphs:
text += paragraph.text + " "
elif file_path.endswith(".txt"):
with open(file_path, "r", encoding="utf-8") as f:
text = f.read()
elif file_path.endswith((".html", ".htm")):
with open(file_path, "r", encoding="utf-8") as f:
html_content = f.read()
soup = BeautifulSoup(html_content, "html.parser")
text = soup.get_text(separator=" ", strip=True)
elif file_path.endswith(".pdf"):
reader = PdfReader(file_path)
for page in reader.pages:
text += page.extract_text() + " "
elif file_path.endswith(".csv"):
df = pd.read_csv(file_path)
text = " ".join(df.astype(str).agg(" ".join, axis=1))
elif file_path.endswith(".xlsx"):
df = pd.read_excel(file_path)
text = " ".join(df.astype(str).agg(" ".join, axis=1))
elif file_path.endswith(".json"):
with open(file_path, "r", encoding="utf-8") as f:
data = json.load(f)
text = " ".join([str(item) for item in data])
elif file_path.endswith(".xml"):
tree = ET.parse(file_path)
root = tree.getroot()
text = " ".join([elem.text for elem in root.iter() if elem.text])
elif file_path.endswith(".pptx"):
from pptx import Presentation
prs = Presentation(file_path)
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text += shape.text + " "
else:
raise ValueError("Unsupported file type: {}".format(file_path))
cleaned_text = clean_text(text)
return cleaned_text
def clean_files(file_list):
cleaned_files = []
for file in file_list:
cleaned_files.append(extract_and_clean_text(file))
return cleaned_files
def get_embeddings(text):
model = SentenceTransformer("all-mpnet-base-v2")
embeddings = model.encode(text)
return embeddings
def clustering_labels(embeddings):
warnings.filterwarnings("ignore")
embeddings = np.array(embeddings)
if len(embeddings) < 2:
raise ValueError(
"Not enough data points for clustering. At least 2 are required."
)
min_cluster_size = min(2, len(embeddings))
cluster = hdbscan.HDBSCAN(
min_cluster_size=min_cluster_size,
metric="euclidean",
cluster_selection_method="eom",
).fit(embeddings)
return cluster.labels_
def bart_summarizer(text):
model_name_bart = "facebook/bart-large-cnn"
tokenizer = BartTokenizer.from_pretrained(model_name_bart)
model = BartForConditionalGeneration.from_pretrained(model_name_bart)
tokenize_inputs = tokenizer.encode(
text, return_tensors="pt", max_length=1024, truncation=True
)
ids_summarization = model.generate(
tokenize_inputs, num_beams=4, max_length=150, early_stopping=True
)
summary_decoded = tokenizer.decode(ids_summarization[0], skip_special_tokens=True)
return summary_decoded
def longformer_summarizer(text):
tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096")
model = EncoderDecoderModel.from_pretrained(
"patrickvonplaten/longformer2roberta-cnn_dailymail-fp16"
)
inputs = tokenizer(
text, return_tensors="pt", padding="longest", truncation=True
).input_ids
ids_summarization = model.generate(inputs)
summary_decoded = tokenizer.decode(ids_summarization[0], skip_special_tokens=True)
return summary_decoded
def longformer_summarizer_long_text(
text, max_chunk_length=4000, overlap=200, max_summary_length=1024
):
tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096")
model = EncoderDecoderModel.from_pretrained(
"patrickvonplaten/longformer2roberta-cnn_dailymail-fp16"
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
tokens = tokenizer.encode(text)
if len(tokens) <= max_chunk_length:
inputs = tokenizer(text, return_tensors="pt", padding="longest").input_ids.to(
device
)
summary_ids = model.generate(inputs, max_length=max_summary_length)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
chunk_summaries = []
for i in range(0, len(tokens), max_chunk_length - overlap):
chunk_tokens = tokens[i : i + max_chunk_length]
if len(chunk_tokens) < 100:
continue
chunk_text = tokenizer.decode(chunk_tokens, skip_special_tokens=True)
inputs = tokenizer(
chunk_text, return_tensors="pt", padding="longest"
).input_ids.to(device)
summary_ids = model.generate(inputs, max_length=max_summary_length // 2)
chunk_summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
chunk_summaries.append(chunk_summary)
final_summary = " ".join(chunk_summaries)
return final_summary
def summarize_text(text):
bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
input_length = len(bart_tokenizer.encode(text))
if input_length < 1024:
summary = bart_summarizer(text)
elif input_length < 4096:
summary = longformer_summarizer(text)
else:
summary = longformer_summarizer_long_text(text)
return summary
def summarize(embeddings, labels, cleaned_files):
no_of_clusters = max(labels) + 1
clusters_embeddings = []
clusters_text = [""] * no_of_clusters
for i in range(no_of_clusters):
clusters_embeddings.append(embeddings[labels == i])
noise_docs = []
for label, text_chunk in zip(labels, cleaned_files):
if label != -1:
clusters_text[label] += text_chunk
else:
noise_docs.append(text_chunk)
clusters_text.extend(noise_docs)
cluster_texts_combined = ["".join(cluster) for cluster in clusters_text]
final_summaries = [
summarize_text(cluster_text) for cluster_text in cluster_texts_combined
]
return final_summaries
def tfidf_plot(all_text):
tokens = word_tokenize(all_text.lower())
stop_words = set(stopwords.words("english"))
filtered_tokens = [w for w in tokens if not w in stop_words and w.isalnum()]
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform([" ".join(filtered_tokens)])
feature_names = vectorizer.get_feature_names_out()
tfidf_scores = tfidf_matrix.toarray()[0]
top_n = 25
top_indices = tfidf_scores.argsort()[-top_n:]
top_words = [feature_names[i] for i in top_indices]
top_scores = [tfidf_scores[i] for i in top_indices]
fig, ax = plt.subplots(figsize=(10, 5))
ax.barh(top_words, top_scores, color="skyblue")
ax.set_xlabel("TF-IDF Score")
ax.set_ylabel("Words")
ax.set_title("Top {} Important Words (TF-IDF)".format(top_n))
ax.invert_yaxis()
return fig
def dendrogram_plot(embeddings, labels):
similarity_matrix = cosine_similarity(embeddings)
distance_matrix = 1 - similarity_matrix
linkage_matrix = sch.linkage(distance_matrix, method="ward")
dendrogram_labels = [
f"Doc {i} (Cluster {labels[i]})" if labels[i] != -1 else f"Doc {i} (Noise)"
for i in range(len(labels))
]
fig, ax = plt.subplots(figsize=(12, 8))
sch.dendrogram(
linkage_matrix,
labels=dendrogram_labels,
orientation="right",
leaf_font_size=10,
ax=ax,
)
ax.set_title("Hierarchical Dendrogram of Document Clusters", fontsize=14)
ax.set_xlabel("Distance", fontsize=12)
ax.set_ylabel("Documents", fontsize=12)
unique_labels = set(labels)
legend_labels = [
f"Cluster {label}" if label != -1 else "Noise" for label in unique_labels
]
ax.legend(legend_labels, loc="upper right", title="Clusters", fontsize=10)
plt.tight_layout()
return fig
def tsne_plot(embeddings, labels):
n_samples = len(embeddings)
if n_samples < 2:
fig, ax = plt.subplots(figsize=(6, 4))
ax.text(
0.5,
0.5,
"t-SNE plot is not applicable for a single document.",
fontsize=12,
ha="center",
va="center",
wrap=True,
)
ax.axis("off")
return fig
perplexity = min(30, n_samples - 1)
tsne = TSNE(n_components=2, perplexity=perplexity, random_state=42)
reduced_embeddings = tsne.fit_transform(embeddings)
fig, ax = plt.subplots(figsize=(8, 6))
scatter = ax.scatter(
reduced_embeddings[:, 0],
reduced_embeddings[:, 1],
c=labels,
cmap="viridis",
s=50,
alpha=0.8,
)
ax.set_title("t-SNE Visualization of Document Clusters", fontsize=14)
ax.set_xlabel("t-SNE Dimension 1", fontsize=12)
ax.set_ylabel("t-SNE Dimension 2", fontsize=12)
unique_labels = set(labels)
for label in unique_labels:
ax.scatter([], [], label=f"Cluster {label}" if label != -1 else "Noise", s=50)
ax.legend(loc="upper right", title="Clusters", fontsize=10)
cbar = plt.colorbar(scatter, ax=ax)
cbar.set_label("Cluster Labels", fontsize=12)
return fig
def wordcloud_plot(all_text):
wordcloud = WordCloud(width=800, height=400, background_color="white").generate(
all_text
)
fig, ax = plt.subplots(figsize=(10, 5), facecolor=None)
ax.imshow(wordcloud)
ax.axis("off")
plt.tight_layout(pad=0)
buf = io.BytesIO()
fig.savefig(buf, format="png")
buf.seek(0)
img = Image.open(buf)
img_array = np.array(img)
buf.close()
plt.close(fig)
return img_array
def summarize_docs(files_text):
if files_text:
cleaned_files = clean_files(files_text)
if len(cleaned_files) == 1:
summary = summarize_text(cleaned_files[0])
return (
f"Summary for the uploaded document:\n{summary}",
None,
None,
None,
None,
)
embeddings = get_embeddings(cleaned_files)
if len(embeddings) < 2:
return (
"Not enough documents for clustering. Please upload more files.",
None,
None,
None,
None,
)
labels = clustering_labels(embeddings)
summaries = summarize(embeddings, labels, cleaned_files)
summary_output = "\n".join(
[
f"β€’ Summary for cluster/doc {i+1}:\n{summary}"
for i, summary in enumerate(summaries)
]
)
all_text = " ".join(cleaned_files)
tfidf_fig = tfidf_plot(all_text) # Get the tfidf plot figure
dendrogram_fig = dendrogram_plot(
embeddings, labels
) # Get the dendrogram plot figure
tsne_fig = tsne_plot(embeddings, labels) # Get the t-sne plot figure
wordcloud_fig = wordcloud_plot(all_text) # Get the wordcloud plot figure
return summary_output, tfidf_fig, dendrogram_fig, tsne_fig, wordcloud_fig
else:
return "No files uploaded.", None, None, None, None
import gradio as gr
with gr.Blocks() as demo:
gr.Markdown("# πŸ“° Multi-Document Summarization")
with gr.Row():
with gr.Column():
file_upload = gr.Files(label="Upload Your Files")
gr.Markdown(
"### Supported File Types: πŸ“„ `.docx` πŸ“ `.txt` 🌐 `.html` πŸ“‘ `.pdf` πŸ“Š `.csv` πŸ“ˆ `.xlsx` πŸ—‚ `.json` πŸ—ƒ `.xml` 🎞 `.pptx`",
elem_id="file-types-info",
)
summarize_btn = gr.Button("Summarize")
with gr.Column():
summary_output = gr.Textbox(label="β€’ Bullet List of Summaries", lines=10)
gr.Markdown("## πŸ“Š Visualizations")
with gr.Row():
dendro = gr.Plot(label="Dendrogram")
tsne = gr.Plot(label="t-SNE")
with gr.Row():
tfidf = gr.Plot(label="TF-IDF")
with gr.Row():
wordcloud = gr.Image(label="Word Cloud")
summarize_btn.click(
summarize_docs,
inputs=file_upload,
outputs=[summary_output, tfidf, dendro, tsne, wordcloud],
)
demo.launch(share=True)