innocent-charles
commited on
Create streamlit_app.py
Browse files- streamlit_app.py +345 -0
streamlit_app.py
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import re
|
3 |
+
from collections.abc import Iterable
|
4 |
+
|
5 |
+
import pandas as pd
|
6 |
+
import streamlit as st
|
7 |
+
from pandas.api.types import is_bool_dtype, is_datetime64_any_dtype, is_numeric_dtype
|
8 |
+
|
9 |
+
GITHUB_URL = "https://github.com/msamwelmollel/Swahili_LLM_Leaderboard"
|
10 |
+
NON_BENCHMARK_COLS = ["Open?", "Publisher"]
|
11 |
+
|
12 |
+
|
13 |
+
def extract_table_and_format_from_markdown_text(markdown_table: str) -> pd.DataFrame:
|
14 |
+
"""Extracts a table from a markdown text and formats it as a pandas DataFrame.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
text (str): Markdown text containing a table.
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
pd.DataFrame: Table as pandas DataFrame.
|
21 |
+
"""
|
22 |
+
df = (
|
23 |
+
pd.read_table(io.StringIO(markdown_table), sep="|", header=0, index_col=1)
|
24 |
+
.dropna(axis=1, how="all") # drop empty columns
|
25 |
+
.iloc[1:] # drop first row which is the "----" separator of the original markdown table
|
26 |
+
.sort_index(ascending=True)
|
27 |
+
.apply(lambda x: x.str.strip() if x.dtype == "object" else x)
|
28 |
+
.replace("", float("NaN"))
|
29 |
+
.astype(float, errors="ignore")
|
30 |
+
)
|
31 |
+
|
32 |
+
# remove whitespace from column names and index
|
33 |
+
df.columns = df.columns.str.strip()
|
34 |
+
df.index = df.index.str.strip()
|
35 |
+
df.index.name = df.index.name.strip()
|
36 |
+
|
37 |
+
return df
|
38 |
+
|
39 |
+
|
40 |
+
def extract_markdown_table_from_multiline(multiline: str, table_headline: str, next_headline_start: str = "#") -> str:
|
41 |
+
"""Extracts the markdown table from a multiline string.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
multiline (str): content of README.md file.
|
45 |
+
table_headline (str): Headline of the table in the README.md file.
|
46 |
+
next_headline_start (str, optional): Start of the next headline. Defaults to "#".
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
str: Markdown table.
|
50 |
+
|
51 |
+
Raises:
|
52 |
+
ValueError: If the table could not be found.
|
53 |
+
"""
|
54 |
+
# extract everything between the table headline and the next headline
|
55 |
+
table = []
|
56 |
+
start = False
|
57 |
+
for line in multiline.split("\n"):
|
58 |
+
if line.startswith(table_headline):
|
59 |
+
start = True
|
60 |
+
elif line.startswith(next_headline_start):
|
61 |
+
start = False
|
62 |
+
elif start:
|
63 |
+
table.append(line + "\n")
|
64 |
+
|
65 |
+
if len(table) == 0:
|
66 |
+
raise ValueError(f"Could not find table with headline '{table_headline}'")
|
67 |
+
|
68 |
+
return "".join(table)
|
69 |
+
|
70 |
+
|
71 |
+
def remove_markdown_links(text: str) -> str:
|
72 |
+
"""Modifies a markdown text to remove all markdown links.
|
73 |
+
Example: [DISPLAY](LINK) to DISPLAY
|
74 |
+
First find all markdown links with regex.
|
75 |
+
Then replace them with: $1
|
76 |
+
Args:
|
77 |
+
text (str): Markdown text containing markdown links
|
78 |
+
Returns:
|
79 |
+
str: Markdown text without markdown links.
|
80 |
+
"""
|
81 |
+
|
82 |
+
# find all markdown links
|
83 |
+
markdown_links = re.findall(r"\[([^\]]+)\]\(([^)]+)\)", text)
|
84 |
+
|
85 |
+
# remove link keep display text
|
86 |
+
for display, link in markdown_links:
|
87 |
+
text = text.replace(f"[{display}]({link})", display)
|
88 |
+
|
89 |
+
return text
|
90 |
+
|
91 |
+
|
92 |
+
def filter_dataframe_by_row_and_columns(df: pd.DataFrame, ignore_columns: list[str] | None = None) -> pd.DataFrame:
|
93 |
+
"""
|
94 |
+
Filter dataframe by the rows and columns to display.
|
95 |
+
|
96 |
+
This does not select based on the values in the dataframe, but rather on the index and columns.
|
97 |
+
Modified from https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/
|
98 |
+
|
99 |
+
Args:
|
100 |
+
df (pd.DataFrame): Original dataframe
|
101 |
+
ignore_columns (list[str], optional): Columns to ignore. Defaults to None.
|
102 |
+
|
103 |
+
Returns:
|
104 |
+
pd.DataFrame: Filtered dataframe
|
105 |
+
"""
|
106 |
+
df = df.copy()
|
107 |
+
|
108 |
+
if ignore_columns is None:
|
109 |
+
ignore_columns = []
|
110 |
+
|
111 |
+
modification_container = st.container()
|
112 |
+
|
113 |
+
with modification_container:
|
114 |
+
to_filter_index = st.multiselect("Filter by model:", sorted(df.index))
|
115 |
+
if to_filter_index:
|
116 |
+
df = pd.DataFrame(df.loc[to_filter_index])
|
117 |
+
|
118 |
+
to_filter_columns = st.multiselect(
|
119 |
+
"Filter by benchmark:", sorted([c for c in df.columns if c not in ignore_columns])
|
120 |
+
)
|
121 |
+
if to_filter_columns:
|
122 |
+
df = pd.DataFrame(df[ignore_columns + to_filter_columns])
|
123 |
+
|
124 |
+
return df
|
125 |
+
|
126 |
+
|
127 |
+
def filter_dataframe_by_column_values(df: pd.DataFrame) -> pd.DataFrame:
|
128 |
+
"""
|
129 |
+
Filter dataframe by the values in the dataframe.
|
130 |
+
|
131 |
+
Modified from https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/
|
132 |
+
|
133 |
+
Args:
|
134 |
+
df (pd.DataFrame): Original dataframe
|
135 |
+
|
136 |
+
Returns:
|
137 |
+
pd.DataFrame: Filtered dataframe
|
138 |
+
"""
|
139 |
+
df = df.copy()
|
140 |
+
|
141 |
+
modification_container = st.container()
|
142 |
+
|
143 |
+
with modification_container:
|
144 |
+
to_filter_columns = st.multiselect("Filter results on:", df.columns)
|
145 |
+
left, right = st.columns((1, 20))
|
146 |
+
|
147 |
+
for column in to_filter_columns:
|
148 |
+
if is_bool_dtype(df[column]):
|
149 |
+
user_bool_input = right.checkbox(f"{column}", value=True)
|
150 |
+
df = df[df[column] == user_bool_input]
|
151 |
+
|
152 |
+
elif is_numeric_dtype(df[column]):
|
153 |
+
_min = float(df[column].min())
|
154 |
+
_max = float(df[column].max())
|
155 |
+
|
156 |
+
if (_min != _max) and pd.notna(_min) and pd.notna(_max):
|
157 |
+
step = 0.01
|
158 |
+
user_num_input = right.slider(
|
159 |
+
f"Values for {column}:",
|
160 |
+
min_value=round(_min - step, 2),
|
161 |
+
max_value=round(_max + step, 2),
|
162 |
+
value=(_min, _max),
|
163 |
+
step=step,
|
164 |
+
)
|
165 |
+
df = df[df[column].between(*user_num_input)]
|
166 |
+
|
167 |
+
elif is_datetime64_any_dtype(df[column]):
|
168 |
+
user_date_input = right.date_input(
|
169 |
+
f"Values for {column}:",
|
170 |
+
value=(
|
171 |
+
df[column].min(),
|
172 |
+
df[column].max(),
|
173 |
+
),
|
174 |
+
)
|
175 |
+
if isinstance(user_date_input, Iterable) and len(user_date_input) == 2:
|
176 |
+
user_date_input_datetime = tuple(map(pd.to_datetime, user_date_input))
|
177 |
+
start_date, end_date = user_date_input_datetime
|
178 |
+
df = df.loc[df[column].between(start_date, end_date)]
|
179 |
+
|
180 |
+
else:
|
181 |
+
selected_values = right.multiselect(
|
182 |
+
f"Values for {column}:",
|
183 |
+
sorted(df[column].unique()),
|
184 |
+
)
|
185 |
+
|
186 |
+
if selected_values:
|
187 |
+
df = df[df[column].isin(selected_values)]
|
188 |
+
|
189 |
+
return df
|
190 |
+
|
191 |
+
|
192 |
+
def setup_basic():
|
193 |
+
title = "🏆 Swahili-LLM-Leaderboard"
|
194 |
+
|
195 |
+
st.set_page_config(
|
196 |
+
page_title=title,
|
197 |
+
page_icon="🏆",
|
198 |
+
layout="wide",
|
199 |
+
)
|
200 |
+
st.title(title)
|
201 |
+
|
202 |
+
st.markdown(
|
203 |
+
"A joint community effort to create a Swahili central leaderboard for LLMs."
|
204 |
+
f" Visit [swahili-llm-leaderboard]({GITHUB_URL}) to contribute. \n"
|
205 |
+
# 'We refer to a model being "open" if it can be locally deployed and used for commercial purposes.'
|
206 |
+
)
|
207 |
+
|
208 |
+
|
209 |
+
def setup_leaderboard(readme: str):
|
210 |
+
leaderboard_table = extract_markdown_table_from_multiline(readme, table_headline="## Leaderboard")
|
211 |
+
leaderboard_table = remove_markdown_links(leaderboard_table)
|
212 |
+
df_leaderboard = extract_table_and_format_from_markdown_text(leaderboard_table)
|
213 |
+
df_leaderboard["Open?"] = df_leaderboard["Open?"].map({"yes": 1, "no": 0}).astype(bool)
|
214 |
+
|
215 |
+
st.markdown("## Leaderboard")
|
216 |
+
modify = st.checkbox("Add filters")
|
217 |
+
clear_empty_entries = st.checkbox("Clear empty entries", value=True)
|
218 |
+
|
219 |
+
if modify:
|
220 |
+
df_leaderboard = filter_dataframe_by_row_and_columns(df_leaderboard, ignore_columns=NON_BENCHMARK_COLS)
|
221 |
+
df_leaderboard = filter_dataframe_by_column_values(df_leaderboard)
|
222 |
+
|
223 |
+
if clear_empty_entries:
|
224 |
+
df_leaderboard = df_leaderboard.dropna(axis=1, how="all")
|
225 |
+
benchmark_columns = [c for c in df_leaderboard.columns if df_leaderboard[c].dtype == float]
|
226 |
+
rows_wo_any_benchmark = df_leaderboard[benchmark_columns].isna().all(axis=1)
|
227 |
+
df_leaderboard = df_leaderboard[~rows_wo_any_benchmark]
|
228 |
+
|
229 |
+
st.dataframe(df_leaderboard)
|
230 |
+
|
231 |
+
st.download_button(
|
232 |
+
"Download current selection as .html",
|
233 |
+
df_leaderboard.to_html().encode("utf-8"),
|
234 |
+
"leaderboard.html",
|
235 |
+
"text/html",
|
236 |
+
key="download-html",
|
237 |
+
)
|
238 |
+
|
239 |
+
st.download_button(
|
240 |
+
"Download current selection as .csv",
|
241 |
+
df_leaderboard.to_csv().encode("utf-8"),
|
242 |
+
"leaderboard.csv",
|
243 |
+
"text/csv",
|
244 |
+
key="download-csv",
|
245 |
+
)
|
246 |
+
|
247 |
+
|
248 |
+
def setup_benchmarks(readme: str):
|
249 |
+
benchmarks_table = extract_markdown_table_from_multiline(readme, table_headline="## Benchmarks")
|
250 |
+
df_benchmarks = extract_table_and_format_from_markdown_text(benchmarks_table)
|
251 |
+
|
252 |
+
st.markdown("## Covered Benchmarks")
|
253 |
+
|
254 |
+
selected_benchmark = st.selectbox("Select a benchmark to learn more:", df_benchmarks.index.unique())
|
255 |
+
df_selected = df_benchmarks.loc[selected_benchmark]
|
256 |
+
text = [
|
257 |
+
f"Name: {selected_benchmark}",
|
258 |
+
]
|
259 |
+
for key in df_selected.keys():
|
260 |
+
text.append(f"{key}: {df_selected[key]} ")
|
261 |
+
st.markdown(" \n".join(text))
|
262 |
+
|
263 |
+
|
264 |
+
def setup_sources():
|
265 |
+
st.markdown("## Sources")
|
266 |
+
st.markdown(
|
267 |
+
"The results of this leaderboard are collected from the individual papers and published results of the model "
|
268 |
+
"authors. If you are interested in the sources of each individual reported model value, please visit the "
|
269 |
+
f"[llm-leaderboard]({GITHUB_URL}) repository."
|
270 |
+
)
|
271 |
+
st.markdown(
|
272 |
+
"""
|
273 |
+
Special thanks to the following pages:
|
274 |
+
- [MosaicML - Model benchmarks](https://www.mosaicml.com/blog/mpt-7b)
|
275 |
+
- [lmsys.org - Chatbot Arena benchmarks](https://lmsys.org/blog/2023-05-03-arena/)
|
276 |
+
- [Papers With Code](https://paperswithcode.com/)
|
277 |
+
- [Stanford HELM](https://crfm.stanford.edu/helm/latest/)
|
278 |
+
- [Stanford HELM](https://crfm.stanford.edu/helm/latest/)
|
279 |
+
- [HF Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
280 |
+
"""
|
281 |
+
)
|
282 |
+
def setup_Sponsorship():
|
283 |
+
st.markdown("## Sponsorship")
|
284 |
+
st.markdown(
|
285 |
+
# "The results of this leaderboard are collected from the individual papers and published results of the model "
|
286 |
+
# "authors. If you are interested in the sources of each individual reported model value, please visit the "
|
287 |
+
# f"[llm-leaderboard]({GITHUB_URL}) repository."
|
288 |
+
"The benchmark is English-based, and we need support translating it into Swahili."
|
289 |
+
"We welcome sponsorships to help advance this endeavor."
|
290 |
+
"Your sponsorship would facilitate this essential translation effort, bridging language barriers and making the benchmark "
|
291 |
+
"accessible to a broader audience. We're grateful for the dedication shown by our collaborators and aim to extend this impact "
|
292 |
+
"further with the support of sponsors committed to advancing language technologies."
|
293 |
+
"Any support please reach me: msamwelmollel@gmail.com"
|
294 |
+
)
|
295 |
+
|
296 |
+
def setup_Contribution():
|
297 |
+
st.markdown("## How to Contribute")
|
298 |
+
|
299 |
+
markdown_content = """
|
300 |
+
- Model name (don't forget the links):
|
301 |
+
- Filling in missing entries
|
302 |
+
- Adding a new model as a new row to the leaderboard. Please keep the descending order.
|
303 |
+
- Adding a new benchmark as a new column in the leaderboard and adding the benchmark to the benchmarks table. Please keep the descending order.
|
304 |
+
- Code work:
|
305 |
+
- Improving the existing code
|
306 |
+
- Requesting and implementing new features
|
307 |
+
"""
|
308 |
+
st.markdown(markdown_content)
|
309 |
+
|
310 |
+
|
311 |
+
|
312 |
+
def setup_disclaimer():
|
313 |
+
st.markdown("## Disclaimer")
|
314 |
+
st.markdown(
|
315 |
+
"Above information may be wrong. If you want to use a published model for commercial use, please contact a "
|
316 |
+
"lawyer."
|
317 |
+
)
|
318 |
+
|
319 |
+
|
320 |
+
def setup_footer():
|
321 |
+
st.markdown(
|
322 |
+
"""
|
323 |
+
---
|
324 |
+
Made with ❤️ by the awesome open-source community from all over 🌍.
|
325 |
+
"""
|
326 |
+
)
|
327 |
+
|
328 |
+
|
329 |
+
def main():
|
330 |
+
setup_basic()
|
331 |
+
|
332 |
+
with open("README.md", "r") as f:
|
333 |
+
readme = f.read()
|
334 |
+
|
335 |
+
setup_leaderboard(readme)
|
336 |
+
# setup_benchmarks(readme)
|
337 |
+
# setup_sources()
|
338 |
+
# setup_disclaimer()
|
339 |
+
# setup_footer()
|
340 |
+
setup_Contribution()
|
341 |
+
setup_Sponsorship()
|
342 |
+
|
343 |
+
|
344 |
+
if __name__ == "__main__":
|
345 |
+
main()
|