Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
from langchain_openai import ChatOpenAI | |
from langchain_core.messages import AnyMessage, HumanMessage, AIMessage, SystemMessage | |
from langgraph.graph import START, StateGraph | |
from langgraph.prebuilt import ToolNode, tools_condition | |
from langgraph.graph.message import add_messages | |
from typing import TypedDict, Annotated | |
from tools import ( | |
serp_search_tool, | |
python_execution_tool, | |
reverse_text_tool, | |
audio_processing_tool, | |
video_analysis_tool, | |
image_recognition_tool, | |
file_type_detection_tool, | |
read_file_tool, | |
code_execution_tool, | |
math_calculation_tool, | |
wiki_search_tool, | |
python_repl_tool, | |
extract_text_from_image_tool, | |
analyze_csv_file_tool, | |
analyze_excel_file_tool, | |
) | |
import re | |
import tempfile | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# Setting up the llm | |
llm = ChatOpenAI(model="gpt-4o", temperature=0) | |
tools = [ | |
serp_search_tool, | |
wiki_search_tool, | |
python_execution_tool, | |
reverse_text_tool, | |
audio_processing_tool, | |
video_analysis_tool, | |
image_recognition_tool, | |
file_type_detection_tool, | |
read_file_tool, | |
code_execution_tool, | |
math_calculation_tool, | |
python_repl_tool, | |
extract_text_from_image_tool, | |
analyze_csv_file_tool, | |
analyze_excel_file_tool, | |
] | |
chat_with_tools = llm.bind_tools(tools) | |
# Defining my agent | |
class MyAgent(TypedDict): | |
messages: Annotated[list[AnyMessage], add_messages] | |
# ========================= | |
# Efficient File Handling - Download with Question | |
# ========================= | |
def process_question_with_files(question_data: dict) -> str: | |
""" | |
Download file content when processing the question and include it directly. | |
This eliminates the need for the agent to download files separately. | |
""" | |
question_text = question_data.get('question', '') | |
file_name = question_data.get('file_name', '') | |
task_id = question_data.get('task_id', '') | |
if not file_name: | |
return question_text | |
print(f"📎 Downloading file for question: {file_name}") | |
try: | |
# Download the file content directly | |
file_url = f"{DEFAULT_API_URL}/files/{task_id}" | |
response = requests.get(file_url, timeout=15) | |
response.raise_for_status() | |
# Save file to temporary location for processing | |
temp_dir = tempfile.gettempdir() | |
local_file_path = os.path.join(temp_dir, file_name) | |
with open(local_file_path, "wb") as f: | |
f.write(response.content) | |
# Process the file based on its type | |
ext = file_name.lower().split('.')[-1] | |
if ext in ['mp3', 'wav', 'm4a', 'flac', 'ogg']: | |
result = audio_processing_tool.invoke(local_file_path) | |
file_info = f"[Audio Transcription: {result}]" | |
elif ext in ['png', 'jpg', 'jpeg', 'gif', 'bmp']: | |
result = image_recognition_tool.invoke(local_file_path) | |
file_info = f"[Image Analysis: {result}]" | |
elif ext in ['csv', 'xls', 'xlsx']: | |
result = read_file_tool.invoke(local_file_path) | |
file_info = f"[Spreadsheet Content: {result}]" | |
elif ext in ['txt', 'md', 'py', 'json']: | |
result = read_file_tool.invoke(local_file_path) | |
file_info = f"[File Content: {result}]" | |
else: | |
result = read_file_tool.invoke(local_file_path) | |
file_info = f"[File Content: {result}]" | |
# Clean up the temporary file | |
try: | |
os.remove(local_file_path) | |
except Exception: | |
pass | |
return f"{question_text}\n\n{file_info}" | |
except Exception as e: | |
print(f"Error downloading/processing file {file_name}: {e}") | |
return f"{question_text}\n\n[Note: Could not download or process attached file {file_name}: {str(e)}]" | |
def extract_final_answer(text: str) -> str: | |
# Remove common prefixes | |
text = re.sub(r'(?i)(answer:|final answer:|the answer is:)', '', text) | |
# Remove repeated question lines | |
lines = [line for line in text.strip().split( | |
'\n') if not line.strip().endswith('?')] | |
# If the answer is a number at the end, return it | |
match = re.search(r'\b\d+\b$', text.strip()) | |
if match: | |
return match.group(0) | |
# If the answer is a comma-separated list, return it | |
if ',' in text and len(text.split(',')) <= 10: | |
return ','.join([x.strip() for x in text.split(',') if x.strip()]) | |
# Otherwise, return the last non-empty line | |
for line in reversed(lines): | |
if line.strip(): | |
return line.strip() | |
return text.strip() | |
class AgentWrapper: | |
def __init__(self): | |
print("AgentWrapper initialized.") | |
def __call__(self, question_data: dict | str) -> str: | |
if isinstance(question_data, str): | |
question_text = question_data | |
print( | |
f"Agent received question (first 50 chars): {question_text[:50]}...") | |
else: | |
question_text = process_question_with_files(question_data) | |
print( | |
f"Agent received enhanced question (first 50 chars): {question_text[:50]}...") | |
try: | |
result = my_agent.invoke( | |
{"messages": [HumanMessage(content=question_text)]}) | |
last_message = result["messages"][-1] | |
answer = last_message.content | |
final_answer = extract_final_answer(answer) | |
print(f"Agent returning answer: {final_answer}") | |
return final_answer | |
except Exception as e: | |
print(f"Error in agent processing: {e}") | |
return f"Error processing question: {e}" | |
# set the main system prompt | |
def assistant(state: MyAgent): | |
# Add system message to instruct the agent to use the tool | |
system_message = SystemMessage(content=""" | |
You are a general AI assistant. I will ask you a question. Report your thoughts, and finish | |
your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. | |
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of | |
numbers and/or strings. | |
If you are asked for a number, don’t use comma to write your number neither use units such as $ or percent | |
sign unless specified otherwise. | |
If you are asked for a string, don’t use articles, neither abbreviations (e.g. for cities), and write the digits in | |
plain text unless specified otherwise. | |
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put | |
in the list is a number or a string. | |
""") | |
# Combine system message with user messages | |
all_messages = [system_message] + state["messages"] | |
return { | |
"messages": [chat_with_tools.invoke(all_messages)], | |
} | |
# define the agent graph | |
builder = StateGraph(MyAgent) | |
# Define nodes: these do the work | |
builder.add_node("assistant", assistant) | |
builder.add_node("tools", ToolNode(tools)) | |
# Define edges: these determine how the control flow moves | |
builder.add_edge(START, "assistant") | |
builder.add_conditional_edges( | |
"assistant", | |
tools_condition, | |
) | |
builder.add_edge("tools", "assistant") | |
my_agent = builder.compile() | |
# submit | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs MyAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
# Get the SPACE_ID for sending link to the code | |
space_id = os.getenv("SPACE_ID") | |
if profile: | |
username = f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = AgentWrapper() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
file_name = item.get("file_name", "") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
# Create complete question data for the agent | |
question_data = { | |
"task_id": task_id, | |
"question": question_text, | |
"file_name": file_name | |
} | |
try: | |
submitted_answer = agent(question_data) | |
answers_payload.append( | |
{"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append( | |
{"Task ID": task_id, "Question": question_text, "File": file_name, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append( | |
{"Task ID": task_id, "Question": question_text, "File": file_name, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip( | |
), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# MyAgent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox( | |
label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame( | |
label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print( | |
f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print( | |
f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) | |
# test | |
messages = [HumanMessage( | |
content="Question: How many studio albums were published by Mercedes Sosa between 2000 and 2009 (included)? You can use the latest 2022 version of english wikipedia.")] | |
response = my_agent.invoke({"messages": messages}) | |
print("🎩 Alfred's Response:") | |
print(response['messages'][-1].content) | |