CLAPP / CLAPP.py
Santiago Casas
add project files and clapp.png
8343c13
# This script requires Streamlit and LangChain
# Install it with: pip install streamlit openai langchain langchain-openai langchain-community
import streamlit as st
import time
import json
import os
import base64
import getpass
from cryptography.fernet import Fernet
from langchain_openai import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.documents import Document
from langchain.callbacks.base import BaseCallbackHandler
from pydantic import BaseModel, Field
from typing import Annotated
from autogen import ConversableAgent, LLMConfig, UpdateSystemMessage
import tempfile
from autogen.coding import LocalCommandLineCodeExecutor, CodeBlock
import matplotlib
matplotlib.use('Agg') # Set the backend to Agg before importing pyplot
import matplotlib.pyplot as plt
import io
from PIL import Image
import re
import subprocess
import sys
from typing import Tuple
import contextlib # for contextlib.contextmanager
# --- Helper Functions ---
def save_encrypted_key(encrypted_key, username):
"""Save encrypted key to file with username prefix"""
try:
filename = f"{username}_encrypted_api_key" if username else ".encrypted_api_key"
with open(filename, "w") as f:
f.write(encrypted_key)
return True
except Exception as e:
return False
def load_encrypted_key(username):
"""Load encrypted key from file with username prefix"""
try:
filename = f"{username}_encrypted_api_key" if username else ".encrypted_api_key"
with open(filename, "r") as f:
return f.read()
except FileNotFoundError:
return None
def read_keys_from_file(file_path):
with open(file_path, 'r') as file:
return json.load(file)
def read_prompt_from_file(path):
with open(path, 'r') as f:
return f.read()
class Response:
def __init__(self, content):
self.content = content
class Feedback(BaseModel):
grade: Annotated[int, Field(description="Score from 1 to 10")]
improvement_instructions: Annotated[str, Field(description="Advice on how to improve the reply")]
class StreamHandler(BaseCallbackHandler):
def __init__(self, container):
self.container = container
self.text = ""
def on_llm_new_token(self, token: str, **kwargs):
self.text += token
self.container.markdown(self.text + "▌")
# --- Streamlit Page Config ---
st.set_page_config(
page_title="CLAPP Agent",
page_icon="🤖",
layout="wide",
initial_sidebar_state="auto"
)
st.markdown("# CLAPP: CLASS LLM Agent for Pair Programming")
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
st.image("images/CLAPP.png", width=400)
# New prompts for the swarm
Initial_Agent_Instructions = read_prompt_from_file("prompts/class_instructions.txt") # Reuse or adapt class_instructions
Review_Agent_Instructions = read_prompt_from_file("prompts/review_instructions.txt") # Adapt rating_instructions
#Typo_Agent_Instructions = read_prompt_from_file("prompts/typo_instructions.txt") # New prompt file
Formatting_Agent_Instructions = read_prompt_from_file("prompts/formatting_instructions.txt") # New prompt file
Code_Execution_Agent_Instructions = read_prompt_from_file("prompts/codeexecutor_instructions.txt") # New prompt file
# --- Initialize Session State ---
def init_session():
if "messages" not in st.session_state:
st.session_state.messages = []
if "debug" not in st.session_state:
st.session_state.debug = False
if "llm" not in st.session_state:
st.session_state.llm = None
if "llmBG" not in st.session_state:
st.session_state.llmBG = None
if "memory" not in st.session_state:
st.session_state.memory = ChatMessageHistory()
if "vector_store" not in st.session_state:
st.session_state.vector_store = None
if "last_token_count" not in st.session_state:
st.session_state.last_token_count = 0
if "selected_model" not in st.session_state:
st.session_state.selected_model = "gpt-4o-mini"
if "greeted" not in st.session_state:
st.session_state.greeted = False
if "debug_messages" not in st.session_state:
st.session_state.debug_messages = []
init_session()
# --- Sidebar Configuration ---
with st.sidebar:
st.header("🔐 API & Assistants")
api_key = st.text_input("1. OpenAI API Key", type="password")
username = st.text_input("2. Username (for saving your API key)", placeholder="Enter your username")
user_password = st.text_input("3. Password to encrypt/decrypt API key", type="password")
# When both API key and password are provided
if api_key and user_password:
# Create encryption key from password
key = base64.urlsafe_b64encode(user_password.ljust(32)[:32].encode())
fernet = Fernet(key)
# If this is a new API key, encrypt and save it
if "saved_api_key" not in st.session_state or api_key != st.session_state.saved_api_key:
try:
# Encrypt the API key
encrypted_key = fernet.encrypt(api_key.encode())
# Save to session state and file
st.session_state.saved_api_key = api_key
st.session_state.encrypted_key = encrypted_key.decode()
# Save to file
if save_encrypted_key(encrypted_key.decode(), username):
st.success("API key encrypted and saved! ✅")
else:
st.warning("API key encrypted but couldn't save to file! ⚠️")
except Exception as e:
st.error(f"Error saving API key: {str(e)}")
# Try to load saved API key if password is provided
elif user_password and not api_key:
# Try to load from file first
encrypted_key = load_encrypted_key(username)
if encrypted_key:
try:
# Recreate encryption key
key = base64.urlsafe_b64encode(user_password.ljust(32)[:32].encode())
fernet = Fernet(key)
# Decrypt the saved key
decrypted_key = fernet.decrypt(encrypted_key.encode()).decode()
# Set the API key
api_key = decrypted_key
st.session_state.saved_api_key = api_key
st.success("API key loaded successfully! 🔑")
except Exception as e:
st.error("Failed to decrypt API key. Wrong password? 🔒")
else:
st.warning("No saved API key found. Please enter your API key first. 🔑")
# Add clear saved key button
if st.button("🗑️ Clear Saved API Key"):
deleted_files = False
error_message = ""
# Try to delete username-specific file if it exists
if username:
filename = f"{username}_encrypted_api_key"
if os.path.exists(filename):
try:
os.remove(filename)
deleted_files = True
st.success(f"Deleted key file for user: {username}")
except Exception as e:
error_message += f"Error clearing {filename}: {str(e)}\n"
# Also try to delete the default file if it exists
if os.path.exists(".encrypted_api_key"):
try:
os.remove(".encrypted_api_key")
deleted_files = True
st.success("Deleted default key file")
except Exception as e:
error_message += f"Error clearing default key file: {str(e)}\n"
# Clean up session state
if "saved_api_key" in st.session_state:
del st.session_state.saved_api_key
if "encrypted_key" in st.session_state:
del st.session_state.encrypted_key
# Show appropriate message
if deleted_files:
st.info("Session cleared. Reloading page...")
time.sleep(1) # Brief pause so user can see the message
st.rerun()
elif error_message:
st.error(error_message)
else:
st.warning("No saved API keys found to delete.")
st.session_state.selected_model = st.selectbox(
"4. Choose LLM model 🧠",
options=["gpt-4o-mini", "gpt-4o"],
index=["gpt-4o-mini", "gpt-4o"].index(st.session_state.selected_model)
)
# Check if model has changed
if "previous_model" not in st.session_state:
st.session_state.previous_model = st.session_state.selected_model
elif st.session_state.previous_model != st.session_state.selected_model:
# Reset relevant state variables when model changes
st.session_state.vector_store = None
st.session_state.greeted = False
st.session_state.messages = []
st.session_state.memory = ChatMessageHistory()
st.session_state.previous_model = st.session_state.selected_model
st.info("Model changed! Please initialize again with the new model.")
st.write("### Response Mode")
col1, col2 = st.columns([1, 2])
with col1:
mode_is_fast = st.toggle("Fast Mode", value=True)
with col2:
if mode_is_fast:
st.caption("✨ Quick responses with good quality (recommended for most uses)")
else:
st.caption("🎯 Swarm mode, more refined responses (may take longer)")
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
# Initialize only after model is selected
if st.button("🚀 Initialize with Selected Model"):
# First initialization without streaming
st.session_state.llm = ChatOpenAI(
model_name=st.session_state.selected_model,
openai_api_key=api_key,
temperature=1.0
)
if st.session_state.vector_store is None:
embedding_status = st.empty()
embedding_status.info("🔄 Processing and embedding your RAG data... This might take a moment! ⏳")
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
# Get all files from class-data directory
all_docs = []
for filename in os.listdir("./class-data"):
file_path = os.path.join("./class-data", filename)
if filename.endswith('.pdf'):
# Handle PDF files
loader = PyPDFLoader(file_path)
docs = loader.load()
all_docs.extend(docs)
elif filename.endswith(('.txt', '.py', '.ini')): # Added .py extension
# Handle text and Python files
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
# Create a document with metadata
all_docs.append(Document(
page_content=text,
metadata={"source": filename, "type": "code" if filename.endswith('.py') else "text"}
))
# Split and process all documents
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
def sanitize(documents):
for doc in documents:
doc.page_content = doc.page_content.encode("utf-8", "ignore").decode("utf-8")
return documents
splits = text_splitter.split_documents(all_docs)
splits = sanitize(splits)
# Create vector store from all documents
st.session_state.vector_store = FAISS.from_documents(splits, embedding=embeddings)
embedding_status.empty() # Clear the loading message
# Initialize but don't generate welcome message yet
if not st.session_state.greeted:
# Just set the initialized flag, we'll generate the welcome message later
st.session_state.llm_initialized = True
st.rerun() # Refresh the page to show the initialized state
st.markdown("---") # Add a separator for better visual organization
# Check if CLASS is already installed
st.markdown("### 🔧 CLASS Setup")
if st.checkbox("Check CLASS installation status"):
try:
# Use sys.executable to run a simple test to see if classy can be imported
result = subprocess.run(
[sys.executable, "-c", "from classy import Class; print('CLASS successfully imported!')"],
capture_output=True,
text=True
)
if result.returncode == 0:
st.success("✅ CLASS is already installed and ready to use!")
else:
st.error("❌ The 'classy' module is not installed. Please install CLASS using the button below.")
if result.stderr:
st.code(result.stderr, language="bash")
except Exception as e:
st.error(f"❌ Error checking CLASS installation: {str(e)}")
# Add CLASS installation and testing buttons
st.text("If not installed, install CLASS to enable code execution and plotting")
if st.button("🔄 Install CLASS"):
# Show simple initial message
status_placeholder = st.empty()
status_placeholder.info("Installing CLASS... This could take a few minutes.")
try:
# Get the path to install_classy.sh
install_script_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'install_classy.sh')
# Make the script executable
os.chmod(install_script_path, 0o755)
# Run the installation script with shell=True to ensure proper execution
process = subprocess.Popen(
[install_script_path],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1,
shell=True,
cwd=os.path.dirname(os.path.abspath(__file__))
)
# Create a placeholder for the current line
current_line_placeholder = st.empty()
# Collect output in the background while showing just the last line
output_text = ""
for line in iter(process.stdout.readline, ''):
output_text += line
# Update the placeholder with just the current line (real-time feedback)
if line.strip(): # Only update for non-empty lines
current_line_placeholder.info(f"Current: {line.strip()}")
# Get the final return code
return_code = process.wait()
# Clear the current line placeholder when done
current_line_placeholder.empty()
# Update status based on result
if return_code == 0:
status_placeholder.success("✅ CLASS installed successfully!")
else:
status_placeholder.error(f"❌ CLASS installation failed with return code: {return_code}")
# Display the full output in an expander (not expanded by default)
with st.expander("View Full Installation Log", expanded=False):
st.code(output_text)
except Exception as e:
status_placeholder.error(f"Installation failed with exception: {str(e)}")
st.exception(e) # Show the full exception for debugging
# Add test environment button
st.text("If CLASS is installed, test the environment")
if st.button("🧪 Test CLASS"):
# Show simple initial message
status_placeholder = st.empty()
status_placeholder.info("Testing CLASS environment... This could take a moment.")
try:
# Get the path to test_classy.py
test_script_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'test_classy.py')
# Create a temporary directory for the test
with tempfile.TemporaryDirectory() as temp_dir:
# Run the test script with streaming output
process = subprocess.Popen(
[sys.executable, test_script_path],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1,
cwd=temp_dir
)
# Create a placeholder for the current line
current_line_placeholder = st.empty()
# Collect output in the background while showing just the last line
output_text = ""
for line in iter(process.stdout.readline, ''):
output_text += line
# Update the placeholder with just the current line (real-time feedback)
if line.strip(): # Only update for non-empty lines
current_line_placeholder.info(f"Current: {line.strip()}")
# Get the final return code
return_code = process.wait()
# Clear the current line placeholder when done
current_line_placeholder.empty()
# Update status based on result
if return_code == 0:
status_placeholder.success("✅ CLASS test completed successfully!")
else:
status_placeholder.error(f"❌ CLASS test failed with return code: {return_code}")
# Check for common errors
if "ModuleNotFoundError" in output_text or "ImportError" in output_text:
st.error("❌ Python module import error detected. Make sure CLASS is properly installed.")
if "CosmoSevereError" in output_text or "CosmoComputationError" in output_text:
st.error("❌ CLASS computation error detected.")
# Display the full output in an expander (not expanded by default)
with st.expander("View Full Test Log", expanded=False):
st.code(output_text)
# Check if the plot was generated
plot_path = os.path.join(temp_dir, 'cmb_temperature_spectrum.png')
if os.path.exists(plot_path):
# Show the plot if it was generated
st.subheader("Generated CMB Power Spectrum")
st.image(plot_path, use_container_width=True)
else:
st.warning("⚠️ No plot was generated")
except Exception as e:
status_placeholder.error(f"Test failed with exception: {str(e)}")
st.exception(e) # Show the full exception for debugging
st.markdown("---") # Add a separator for better visual organization
st.session_state.debug = st.checkbox("🔍 Show Debug Info")
if st.button("🗑️ Reset Chat"):
st.session_state.clear()
st.rerun()
if st.session_state.last_token_count > 0:
st.markdown(f"🧮 **Last response token usage:** `{st.session_state.last_token_count}` tokens")
# --- Display all saved plots in sidebar ---
if "generated_plots" in st.session_state and st.session_state.generated_plots:
with st.expander("📊 Plot Gallery", expanded=False):
st.write("All plots generated during this session:")
# Use a single column layout for the sidebar
for i, plot_path in enumerate(st.session_state.generated_plots):
if os.path.exists(plot_path):
st.image(plot_path, width=250, caption=os.path.basename(plot_path))
st.markdown("---") # Add separator between plots
# --- Retrieval + Prompt Construction ---
def build_messages(context, question, system):
system_msg = SystemMessage(content=system)
human_msg = HumanMessage(content=f"Context:\n{context}\n\nQuestion:\n{question}")
return [system_msg] + st.session_state.memory.messages + [human_msg]
def build_messages_rating(context, question, answer, system):
system_msg = SystemMessage(content=system)
human_msg = HumanMessage(content=f"Context:\n{context}\n\nQuestion:\n{question}\n\nAI Answer:\n{answer}")
return [system_msg] + st.session_state.memory.messages + [human_msg]
def build_messages_refinement(context, question, answer, feedback, system):
system_msg = SystemMessage(content=system)
human_msg = HumanMessage(content=f"Context:\n{context}\n\nQuestion:\n{question}\n\nAI Answer:\n{answer}\n\nReviewer Feedback:\n{feedback}")
return [system_msg] + st.session_state.memory.messages + [human_msg]
def format_memory_messages(memory_messages):
formatted = ""
for msg in memory_messages:
role = msg.type.capitalize() # 'human' -> 'Human'
content = msg.content
formatted += f"{role}: {content}\n\n"
return formatted.strip()
def retrieve_context(question):
docs = st.session_state.vector_store.similarity_search(question, k=4)
return "\n\n".join([doc.page_content for doc in docs])
# Set up code execution environment
#temp_dir = tempfile.TemporaryDirectory()
class PlotAwareExecutor(LocalCommandLineCodeExecutor):
def __init__(self, **kwargs):
import tempfile
# Create a persistent plots directory if it doesn't exist
plots_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'plots')
os.makedirs(plots_dir, exist_ok=True)
# Still use a temp dir for code execution
temp_dir = tempfile.TemporaryDirectory()
kwargs['work_dir'] = temp_dir.name
super().__init__(**kwargs)
self._temp_dir = temp_dir
self._plots_dir = plots_dir
@contextlib.contextmanager
def _capture_output(self):
old_out, old_err = sys.stdout, sys.stderr
buf_out, buf_err = io.StringIO(), io.StringIO()
sys.stdout, sys.stderr = buf_out, buf_err
try:
yield buf_out, buf_err
finally:
sys.stdout, sys.stderr = old_out, old_err
def execute_code(self, code: str):
# 1) Extract code from markdown
match = re.search(r"```(?:python)?\n(.*?)```", code, re.DOTALL)
cleaned = match.group(1) if match else code
cleaned = cleaned.replace("plt.show()", "")
# Add timestamp for saving figures only if there's plt usage in the code
timestamp = time.strftime("%Y-%m-%d-%H-%M-%S")
plot_filename = f'plot_{timestamp}.png'
plot_path = os.path.join(self._plots_dir, plot_filename)
temp_plot_path = None
for line in cleaned.split("\n"):
if "plt.savefig" in line:
temp_plot_path = os.path.join(self._temp_dir.name, f'temporary_{timestamp}.png')
cleaned = cleaned.replace(line, f"plt.savefig('{temp_plot_path}', dpi=300)")
break
else:
# If there's a plot but no save, auto-insert save
if "plt." in cleaned:
temp_plot_path = os.path.join(self._temp_dir.name, f'temporary_{timestamp}.png')
cleaned += f"\nplt.savefig('{temp_plot_path}')"
# Create a temporary Python file to execute
temp_script_path = os.path.join(self._temp_dir.name, f'temp_script_{timestamp}.py')
with open(temp_script_path, 'w') as f:
f.write(cleaned)
full_output = ""
try:
# 2) Capture stdout using subprocess
process = subprocess.Popen(
[sys.executable, temp_script_path],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1,
cwd=self._temp_dir.name
)
stdout, _ = process.communicate()
# 3) Format the output
with self._capture_output() as (out_buf, err_buf):
if stdout:
out_buf.write(stdout)
stdout_text = out_buf.getvalue()
stderr_text = err_buf.getvalue()
if stdout_text:
full_output += f"STDOUT:\n{stdout_text}\n"
if stderr_text:
full_output += f"STDERR:\n{stderr_text}\n"
# Copy plot from temp to persistent location if it exists
if temp_plot_path and os.path.exists(temp_plot_path):
import shutil
shutil.copy2(temp_plot_path, plot_path)
# Initialize the plots list if it doesn't exist
if "generated_plots" not in st.session_state:
st.session_state.generated_plots = []
# Add the persistent plot path to session state
st.session_state.generated_plots.append(plot_path)
except Exception:
with self._capture_output() as (out_buf, err_buf):
import traceback
traceback.print_exc(file=sys.stderr)
full_output += f"STDERR:\n{err_buf.getvalue()}\n"
return full_output, plot_path
# Example instantiation:
executor = PlotAwareExecutor(timeout=10)
# Global agent configurations
initial_config = LLMConfig(
api_type="openai",
model=st.session_state.selected_model,
temperature=0.2, # Low temperature for consistent initial responses
api_key=api_key,
)
review_config = LLMConfig(
api_type="openai",
model=st.session_state.selected_model,
temperature=0.7, # Higher temperature for creative reviews
api_key=api_key,
response_format=Feedback
)
# typo_config = LLMConfig(
# api_type="openai",
# model=st.session_state.selected_model,
# temperature=0.1, # Very low temperature for precise code corrections
# api_key=api_key,
# )
formatting_config = LLMConfig(
api_type="openai",
model=st.session_state.selected_model,
temperature=0.3, # Moderate temperature for formatting
api_key=api_key,
)
code_execution_config = LLMConfig(
api_type="openai",
model=st.session_state.selected_model,
temperature=0.1, # Very low temperature for code execution
api_key=api_key,
)
# Global agent instances with updated system messages
initial_agent = ConversableAgent(
name="initial_agent",
system_message=f"""
{Initial_Agent_Instructions}""",
human_input_mode="NEVER",
llm_config=initial_config
)
review_agent = ConversableAgent(
name="review_agent",
system_message=f"""{Review_Agent_Instructions}""",
human_input_mode="NEVER",
llm_config=review_config
)
# typo_agent = ConversableAgent(
# name="typo_agent",
# system_message=f"""You are the typo and code correction agent. Your task is to:
# 1. Fix any typos or grammatical errors
# 2. Correct any code issues
# 3. Ensure proper formatting
# 4. Maintain the original meaning while improving clarity
# 5. Verify plots are saved to disk (not using show())
# 6. PRESERVE all code blocks exactly as they are unless there are actual errors
# 7. If no changes are needed, keep the original code blocks unchanged
# # {Typo_Agent_Instructions}""",
# # human_input_mode="NEVER",
# # llm_config=typo_config
# # )
formatting_agent = ConversableAgent(
name="formatting_agent",
system_message="""{Formatting_Agent_Instructions}""",
human_input_mode="NEVER",
llm_config=formatting_config
)
code_executor = ConversableAgent(
name="code_executor",
system_message="""{Code_Execution_Agent_Instructions}""",
human_input_mode="NEVER",
llm_config=code_execution_config,
code_execution_config={"executor": executor},
max_consecutive_auto_reply=50
)
def call_ai(context, user_input):
if mode_is_fast:
messages = build_messages(context, user_input, Initial_Agent_Instructions)
response = st.session_state.llm.invoke(messages)
return Response(content=response.content)
else:
# New Swarm Workflow for detailed mode
st.markdown("Thinking (Swarm Mode)... ")
# Format the conversation history for context
conversation_history = format_memory_messages(st.session_state.memory.messages)
# 1. Initial Agent generates the draft
st.markdown("Generating initial draft...")
chat_result_1 = initial_agent.initiate_chat(
recipient=initial_agent,
message=f"Conversation history:\n{conversation_history}\n\nContext from documents: {context}\n\nUser question: {user_input}",
max_turns=1,
summary_method="last_msg"
)
draft_answer = chat_result_1.summary
if st.session_state.debug:
st.session_state.debug_messages.append(("Initial Draft", draft_answer))
# 2. Review Agent critiques the draft
st.markdown("Reviewing draft...")
chat_result_2 = review_agent.initiate_chat(
recipient=review_agent,
message=f"Conversation history:\n{conversation_history}\n\nPlease review this draft answer:\n{draft_answer}",
max_turns=1,
summary_method="last_msg"
)
review_feedback = chat_result_2.summary
if st.session_state.debug:
st.session_state.debug_messages.append(("Review Feedback", review_feedback))
# # 3. Typo Agent corrects the draft
# st.markdown("Checking for typos...")
# chat_result_3 = typo_agent.initiate_chat(
# recipient=typo_agent,
# message=f"Original draft: {draft_answer}\n\nReview feedback: {review_feedback}",
# max_turns=1,
# summary_method="last_msg"
# )
# typo_corrected_answer = chat_result_3.summary
# if st.session_state.debug: st.text(f"Typo-Corrected Answer:\n{typo_corrected_answer}")
# 4. Formatting Agent formats the final answer
st.markdown("Formatting final answer...")
chat_result_4 = formatting_agent.initiate_chat(
recipient=formatting_agent,
message=f"""Please format this answer while preserving any code blocks:
{draft_answer}""",
max_turns=1,
summary_method="last_msg"
)
formatted_answer = chat_result_4.summary
if st.session_state.debug:
st.session_state.debug_messages.append(("Formatted Answer", formatted_answer))
# Check if the answer contains code
if "```python" in formatted_answer:
# Add a note about code execution
formatted_answer += "\n\n> 💡 **Note**: This answer contains code. If you want to execute it, type 'execute!' in the chat."
return Response(content=formatted_answer)
else:
return Response(content=formatted_answer)
# --- Chat Input ---
user_input = st.chat_input("Type your prompt here...")
# --- Display Full Chat History ---
for message in st.session_state.messages:
with st.chat_message(message["role"]):
# Check if this message contains a plot path marker
if "PLOT_PATH:" in message["content"]:
# Split content into text and plot path
parts = message["content"].split("PLOT_PATH:")
# Display the text part
st.markdown(parts[0])
# Display each plot path
for plot_info in parts[1:]:
plot_path = plot_info.split('\n')[0].strip()
if os.path.exists(plot_path):
st.image(plot_path, width=700)
else:
st.markdown(message["content"])
# --- Process New Prompt ---
if user_input:
# Show user input immediately
st.session_state.messages.append({"role": "user", "content": user_input})
with st.chat_message("user"):
st.markdown(user_input)
st.session_state.memory.add_user_message(user_input)
context = retrieve_context(user_input)
# Count prompt tokens using tiktoken if needed
try:
import tiktoken
enc = tiktoken.encoding_for_model("gpt-4")
st.session_state.last_token_count = len(enc.encode(user_input))
except:
st.session_state.last_token_count = 0
# Stream assistant response
with st.chat_message("assistant"):
stream_box = st.empty()
stream_handler = StreamHandler(stream_box)
# Second initialization with streaming
st.session_state.llm = ChatOpenAI(
model_name=st.session_state.selected_model,
streaming=True,
callbacks=[stream_handler],
openai_api_key=api_key,
temperature=0.2
)
# Check if this is an execution request
if user_input.strip().lower() == "execute!":
# Find the last assistant message containing code
last_assistant_message = None
for message in reversed(st.session_state.messages):
if message["role"] == "assistant" and "```" in message["content"]:
last_assistant_message = message["content"]
break
if last_assistant_message:
st.markdown("Executing code...")
st.info("🚀 Executing cleaned code...")
#chat_result = code_executor.initiate_chat(
# recipient=code_executor,
# message=f"Please execute this code:\n{last_assistant_message}",
# max_turns=1,
# summary_method="last_msg"
#)
#execution_output = chat_result.summary
execution_output, plot_path = executor.execute_code(last_assistant_message)
st.subheader("Execution Output")
st.text(execution_output) # now contains both STDOUT and STDERR
if os.path.exists(plot_path):
st.success("✅ Plot generated successfully!")
# Display the plot
#st.image(plot_path, use_container_width=True)
st.image(plot_path, width=700)
else:
st.warning("⚠️ No plot was generated")
# Check for errors and iterate if needed
max_iterations = 3 # Maximum number of iterations to prevent infinite loops
current_iteration = 0
has_errors = any(error_indicator in execution_output for error_indicator in ["Traceback", "Error:", "Exception:", "TypeError:", "ValueError:", "NameError:", "SyntaxError:", "Error in Class"])
while has_errors and current_iteration < max_iterations:
current_iteration += 1
st.error(f"Previous error: {execution_output}") # Show the actual error message
st.info(f"🔧 Fixing errors (attempt {current_iteration}/{max_iterations})...")
# Get new review with error information
review_message = f"""
Previous answer had errors during execution:
{execution_output}
Please review and suggest fixes for this answer. IMPORTANT: Preserve all code blocks exactly as they are, only fix actual errors:
{last_assistant_message}
"""
chat_result_2 = review_agent.initiate_chat(
recipient=review_agent,
message=review_message,
max_turns=1,
summary_method="last_msg"
)
review_feedback = chat_result_2.summary
if st.session_state.debug:
st.session_state.debug_messages.append(("Error Review Feedback", review_feedback))
# Get corrected version
chat_result_3 = initial_agent.initiate_chat(
recipient=initial_agent,
message=f"""Original answer: {last_assistant_message}
Review feedback with error fixes: {review_feedback}
IMPORTANT: Only fix actual errors in the code blocks. Preserve all working code exactly as it is.""",
max_turns=1,
summary_method="last_msg"
)
corrected_answer = chat_result_3.summary
if st.session_state.debug:
st.session_state.debug_messages.append(("Corrected Answer", corrected_answer))
# Format the corrected answer
chat_result_4 = formatting_agent.initiate_chat(
recipient=formatting_agent,
message=f"""Please format this corrected answer while preserving all code blocks:
{corrected_answer}
""",
max_turns=1,
summary_method="last_msg"
)
formatted_answer = chat_result_4.summary
if st.session_state.debug:
st.session_state.debug_messages.append(("Formatted Corrected Answer", formatted_answer))
# Execute the corrected code
st.info("🚀 Executing corrected code...")
#chat_result = code_executor.initiate_chat(
# recipient=code_executor,
# message=f"Please execute this corrected code:\n{formatted_answer}",
# max_turns=1,
# summary_method="last_msg"
#)
#execution_output = chat_result.summary
execution_output, plot_path = executor.execute_code(formatted_answer)
st.subheader("Execution Output")
st.text(execution_output) # now contains both STDOUT and STDERR
if os.path.exists(plot_path):
st.success("✅ Plot generated successfully!")
# Display the plot
st.image(plot_path, width=700)
else:
st.warning("⚠️ No plot was generated")
if st.session_state.debug:
st.session_state.debug_messages.append(("Execution Output", execution_output))
# If we've reached the end of iterations and we're successful
if not has_errors or current_iteration == max_iterations:
# Add successful execution to the conversation with plot
final_answer = formatted_answer if formatted_answer else last_assistant_message
response_text = f"Execution completed successfully:\n{execution_output}\n\nThe following code was executed:\n```python\n{final_answer}\n```"
# Add plot path marker for rendering in the conversation
if os.path.exists(plot_path):
response_text += f"\n\nPLOT_PATH:{plot_path}\n"
if current_iteration > 0:
response_text = f"After {current_iteration} correction attempts: " + response_text
# Set the response variable with our constructed text that includes plot
response = Response(content=response_text)
# Update last_assistant_message with the formatted answer for next iteration
last_assistant_message = formatted_answer
has_errors = any(error_indicator in execution_output for error_indicator in ["Traceback", "Error:", "Exception:", "TypeError:", "ValueError:", "NameError:", "SyntaxError:", "Error in Class"])
if has_errors:
st.markdown("> ⚠️ **Note**: Some errors could not be fixed after multiple attempts. You can request changes by describing them in the chat.")
st.markdown(f"> ❌ Last execution message:\n{execution_output}")
response = Response(content=f"Execution completed with errors:\n{execution_output}")
else:
# Check for common error indicators in the output
if any(error_indicator in execution_output for error_indicator in ["Traceback", "Error:", "Exception:", "TypeError:", "ValueError:", "NameError:", "SyntaxError:"]):
st.markdown("> ⚠️ **Note**: Code execution completed but with errors. You can request changes by describing them in the chat.")
st.markdown(f"> ❌ Execution message:\n{execution_output}")
response = Response(content=f"Execution completed with errors:\n{execution_output}")
else:
st.markdown(f"> ✅ Code executed successfully. Last execution message:\n{execution_output}")
# Display the final code that was successfully executed
with st.expander("View Successfully Executed Code", expanded=False):
st.markdown(last_assistant_message)
# Create a response message that includes the plot path
response_text = f"Execution completed successfully:\n{execution_output}\n\nThe following code was executed:\n```python\n{last_assistant_message}\n```"
# Add plot path marker for rendering in the conversation
if os.path.exists(plot_path):
response_text += f"\n\nPLOT_PATH:{plot_path}\n"
response = Response(content=response_text)
else:
response = Response(content="No code found to execute in the previous messages.")
else:
response = call_ai(context, user_input)
if not mode_is_fast:
st.markdown(response.content)
st.session_state.memory.add_ai_message(response.content)
st.session_state.messages.append({"role": "assistant", "content": response.content})
# --- Display Welcome Message (outside of sidebar) ---
# This ensures the welcome message appears in the main content area
if "llm_initialized" in st.session_state and st.session_state.llm_initialized and not st.session_state.greeted:
# Create a chat message container for the welcome message
with st.chat_message("assistant"):
# Create empty container for streaming
welcome_container = st.empty()
# Set up the streaming handler
welcome_stream_handler = StreamHandler(welcome_container)
# Initialize streaming LLM
streaming_llm = ChatOpenAI(
model_name=st.session_state.selected_model,
streaming=True,
callbacks=[welcome_stream_handler],
openai_api_key=api_key,
temperature=0.2
)
# Generate the streaming welcome message
greeting = streaming_llm.invoke([
SystemMessage(content=Initial_Agent_Instructions),
HumanMessage(content="Please greet the user and briefly explain what you can do as the CLASS code assistant.")
])
# Save the completed message to history
st.session_state.messages.append({"role": "assistant", "content": greeting.content})
st.session_state.memory.add_ai_message(greeting.content)
st.session_state.greeted = True
# --- Debug Info ---
if st.session_state.debug:
with st.sidebar.expander("🛠️ Debug Information", expanded=True):
# Create a container for debug messages
debug_container = st.container()
with debug_container:
st.markdown("### Debug Messages")
# Display all debug messages in a scrollable container
for title, message in st.session_state.debug_messages:
st.markdown(f"### {title}")
st.markdown(message)
st.markdown("---")
with st.sidebar.expander("🛠️ Context Used"):
if "context" in locals():
st.markdown(context)
else:
st.markdown("No context retrieved yet.")