Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# coding: utf-8 | |
# In[2]: | |
import gradio as gr | |
import os | |
import pandas as pd | |
from math import sqrt; | |
import numpy as np | |
import matplotlib.pyplot as plt | |
#load packages for ANN | |
import tensorflow as tf | |
def malware_detection_DL (results, malicious_traffic, benign_traffic): | |
plt.clf() | |
if os.path.exists("accplot.png"): | |
os.remove("accplot.png") | |
else: | |
pass | |
if os.path.exists("lossplot.png"): | |
os.remove("lossplot.png") | |
else: | |
pass | |
malicious_dataset = pd.read_csv(malicious_traffic) #Importing Datasets | |
benign_dataset = pd.read_csv(benign_traffic) | |
# Removing duplicated rows from benign_dataset (5380 rows removed) | |
benign_dataset = benign_dataset[benign_dataset.duplicated(keep=False) == False] | |
# Combining both datasets together | |
all_flows = pd.concat([malicious_dataset, benign_dataset]) | |
# Reducing the size of the dataset to reduce the amount of time taken in training models | |
reduced_dataset = all_flows.sample(38000) | |
#dataset with columns with nan values dropped | |
df = reduced_dataset.drop(reduced_dataset.columns[np.isnan(reduced_dataset).any()], axis=1) | |
#### Isolating independent and dependent variables for training dataset | |
reduced_y = df['isMalware'] | |
reduced_x = df.drop(['isMalware'], axis=1); | |
# Splitting datasets into training and test data | |
#x_train, x_test, y_train, y_test = train_test_split(reduced_x, reduced_y, test_size=0.2, random_state=42) | |
#scale data between 0 and 1 | |
#min_max_scaler = preprocessing.MinMaxScaler() | |
#x_scale = min_max_scaler.fit_transform(reduced_x) | |
# Splitting datasets into training and test data | |
#x_train, x_test, y_train, y_test = train_test_split(x_scale, reduced_y, test_size=0.2, random_state=42) | |
#type of layers in ann model is sequential, dense and uses relu activation | |
ann = tf.keras.models.Sequential() | |
model = tf.keras.Sequential([ | |
tf.keras.layers.Dense(32, activation ='relu', input_shape=(373,)), | |
tf.keras.layers.Dense(32, activation = 'relu'), | |
tf.keras.layers.Dense(1, activation = 'sigmoid'), | |
]) | |
model.compile(optimizer ='adam', | |
loss = 'binary_crossentropy', | |
metrics = ['accuracy']) | |
#model.fit(x_train, y_train, batch_size=32, epochs = 150, validation_data=(x_test, y_test)) | |
#does not output epochs and gives evalutaion of validation data and history of losses and accuracy | |
history = model.fit(reduced_x, reduced_y,validation_split=0.33, batch_size=32, epochs = 10,verbose=0) | |
_, accuracy = model.evaluate(reduced_x, reduced_y) | |
#return history.history | |
if results=="Accuracy": | |
#summarize history for accuracy | |
plt.plot(history.history['accuracy']) | |
plt.plot(history.history['val_accuracy']) | |
plt.title('model accuracy') | |
plt.ylabel('accuracy') | |
plt.xlabel('epoch') | |
plt.legend(['train', 'test'], loc='upper left') | |
plt.savefig('accplot.png') | |
return "accplot.png",accuracy | |
else: | |
# summarize history for loss | |
plt.plot(history.history['loss']) | |
plt.plot(history.history['val_loss']) | |
plt.title('model loss') | |
plt.ylabel('loss') | |
plt.xlabel('epoch') | |
plt.legend(['train', 'test'], loc='upper left') | |
plt.savefig('lossplot.png') | |
return 'lossplot.png',accuracy | |
iface = gr.Interface( | |
malware_detection_DL, [gr.inputs.Dropdown(["Accuracy","Loss"], label="Result Type"), | |
gr.inputs.Dropdown(["malicious_flows.csv"], label = "Malicious traffic in .csv"), | |
gr.inputs.Dropdown(["sample_benign_flows.csv"], label="Benign Traffic in .csv") | |
],["image","text"], theme="grass" | |
) | |
iface.launch(enable_queue = True) |