Spaces:
Runtime error
Runtime error
santanupoddar
commited on
Commit
•
bd57e00
1
Parent(s):
38a82a5
updated app py file
Browse files
app.py
CHANGED
@@ -1,21 +1,28 @@
|
|
1 |
-
|
|
|
|
|
|
|
2 |
|
|
|
3 |
|
|
|
4 |
import pandas as pd
|
5 |
from math import sqrt;
|
6 |
-
from sklearn import preprocessing
|
7 |
-
from sklearn.ensemble import RandomForestClassifier
|
8 |
-
from sklearn.linear_model import LogisticRegression;
|
9 |
-
from sklearn.metrics import accuracy_score, r2_score, confusion_matrix, mean_absolute_error, mean_squared_error, f1_score, log_loss
|
10 |
-
from sklearn.model_selection import train_test_split
|
11 |
import numpy as np
|
12 |
import matplotlib.pyplot as plt
|
13 |
-
import seaborn as sns
|
14 |
-
import joblib
|
15 |
#load packages for ANN
|
16 |
import tensorflow as tf
|
17 |
|
18 |
def malware_detection_DL (results, malicious_traffic, benign_traffic):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
malicious_dataset = pd.read_csv(malicious_traffic) #Importing Datasets
|
20 |
benign_dataset = pd.read_csv(benign_traffic)
|
21 |
# Removing duplicated rows from benign_dataset (5380 rows removed)
|
@@ -30,13 +37,13 @@ def malware_detection_DL (results, malicious_traffic, benign_traffic):
|
|
30 |
reduced_y = df['isMalware']
|
31 |
reduced_x = df.drop(['isMalware'], axis=1);
|
32 |
# Splitting datasets into training and test data
|
33 |
-
x_train, x_test, y_train, y_test = train_test_split(reduced_x, reduced_y, test_size=0.2, random_state=42)
|
34 |
|
35 |
#scale data between 0 and 1
|
36 |
-
min_max_scaler = preprocessing.MinMaxScaler()
|
37 |
-
x_scale = min_max_scaler.fit_transform(reduced_x)
|
38 |
# Splitting datasets into training and test data
|
39 |
-
x_train, x_test, y_train, y_test = train_test_split(x_scale, reduced_y, test_size=0.2, random_state=42)
|
40 |
#type of layers in ann model is sequential, dense and uses relu activation
|
41 |
ann = tf.keras.models.Sequential()
|
42 |
model = tf.keras.Sequential([
|
@@ -51,8 +58,8 @@ def malware_detection_DL (results, malicious_traffic, benign_traffic):
|
|
51 |
metrics = ['accuracy'])
|
52 |
#model.fit(x_train, y_train, batch_size=32, epochs = 150, validation_data=(x_test, y_test))
|
53 |
#does not output epochs and gives evalutaion of validation data and history of losses and accuracy
|
54 |
-
history = model.fit(
|
55 |
-
_, accuracy = model.evaluate(
|
56 |
#return history.history
|
57 |
if results=="Accuracy":
|
58 |
#summarize history for accuracy
|
@@ -62,7 +69,8 @@ def malware_detection_DL (results, malicious_traffic, benign_traffic):
|
|
62 |
plt.ylabel('accuracy')
|
63 |
plt.xlabel('epoch')
|
64 |
plt.legend(['train', 'test'], loc='upper left')
|
65 |
-
|
|
|
66 |
else:
|
67 |
# summarize history for loss
|
68 |
plt.plot(history.history['loss'])
|
@@ -71,17 +79,18 @@ def malware_detection_DL (results, malicious_traffic, benign_traffic):
|
|
71 |
plt.ylabel('loss')
|
72 |
plt.xlabel('epoch')
|
73 |
plt.legend(['train', 'test'], loc='upper left')
|
74 |
-
|
|
|
75 |
|
76 |
|
77 |
|
78 |
iface = gr.Interface(
|
79 |
malware_detection_DL, [gr.inputs.Dropdown(["Accuracy","Loss"], label="Result Type"),
|
80 |
-
gr.inputs.Dropdown(["malicious_flows.csv"], label = "Malicious traffic in .csv"),
|
81 |
-
|
|
|
82 |
|
83 |
|
84 |
)
|
85 |
|
86 |
-
iface.launch(
|
87 |
-
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[2]:
|
5 |
|
6 |
+
import gradio as gr
|
7 |
|
8 |
+
import os
|
9 |
import pandas as pd
|
10 |
from math import sqrt;
|
|
|
|
|
|
|
|
|
|
|
11 |
import numpy as np
|
12 |
import matplotlib.pyplot as plt
|
|
|
|
|
13 |
#load packages for ANN
|
14 |
import tensorflow as tf
|
15 |
|
16 |
def malware_detection_DL (results, malicious_traffic, benign_traffic):
|
17 |
+
plt.clf()
|
18 |
+
if os.path.exists("accplot.png"):
|
19 |
+
os.remove("accplot.png")
|
20 |
+
else:
|
21 |
+
pass
|
22 |
+
if os.path.exists("lossplot.png"):
|
23 |
+
os.remove("lossplot.png")
|
24 |
+
else:
|
25 |
+
pass
|
26 |
malicious_dataset = pd.read_csv(malicious_traffic) #Importing Datasets
|
27 |
benign_dataset = pd.read_csv(benign_traffic)
|
28 |
# Removing duplicated rows from benign_dataset (5380 rows removed)
|
|
|
37 |
reduced_y = df['isMalware']
|
38 |
reduced_x = df.drop(['isMalware'], axis=1);
|
39 |
# Splitting datasets into training and test data
|
40 |
+
#x_train, x_test, y_train, y_test = train_test_split(reduced_x, reduced_y, test_size=0.2, random_state=42)
|
41 |
|
42 |
#scale data between 0 and 1
|
43 |
+
#min_max_scaler = preprocessing.MinMaxScaler()
|
44 |
+
#x_scale = min_max_scaler.fit_transform(reduced_x)
|
45 |
# Splitting datasets into training and test data
|
46 |
+
#x_train, x_test, y_train, y_test = train_test_split(x_scale, reduced_y, test_size=0.2, random_state=42)
|
47 |
#type of layers in ann model is sequential, dense and uses relu activation
|
48 |
ann = tf.keras.models.Sequential()
|
49 |
model = tf.keras.Sequential([
|
|
|
58 |
metrics = ['accuracy'])
|
59 |
#model.fit(x_train, y_train, batch_size=32, epochs = 150, validation_data=(x_test, y_test))
|
60 |
#does not output epochs and gives evalutaion of validation data and history of losses and accuracy
|
61 |
+
history = model.fit(reduced_x, reduced_y,validation_split=0.33, batch_size=32, epochs = 10,verbose=0)
|
62 |
+
_, accuracy = model.evaluate(reduced_x, reduced_y)
|
63 |
#return history.history
|
64 |
if results=="Accuracy":
|
65 |
#summarize history for accuracy
|
|
|
69 |
plt.ylabel('accuracy')
|
70 |
plt.xlabel('epoch')
|
71 |
plt.legend(['train', 'test'], loc='upper left')
|
72 |
+
plt.savefig('accplot.png')
|
73 |
+
return "accplot.png",accuracy
|
74 |
else:
|
75 |
# summarize history for loss
|
76 |
plt.plot(history.history['loss'])
|
|
|
79 |
plt.ylabel('loss')
|
80 |
plt.xlabel('epoch')
|
81 |
plt.legend(['train', 'test'], loc='upper left')
|
82 |
+
plt.savefig('lossplot.png')
|
83 |
+
return 'lossplot.png',accuracy
|
84 |
|
85 |
|
86 |
|
87 |
iface = gr.Interface(
|
88 |
malware_detection_DL, [gr.inputs.Dropdown(["Accuracy","Loss"], label="Result Type"),
|
89 |
+
gr.inputs.Dropdown(["malicious_flows.csv"], label = "Malicious traffic in .csv"),
|
90 |
+
gr.inputs.Dropdown(["sample_benign_flows.csv"], label="Benign Traffic in .csv")
|
91 |
+
],["image","text"], theme="grass"
|
92 |
|
93 |
|
94 |
)
|
95 |
|
96 |
+
iface.launch(enable_queue = True)
|
|