|
import torch |
|
import gradio as gr |
|
from transformers import TextIteratorStreamer, AutoProcessor, LlavaForConditionalGeneration |
|
from PIL import Image |
|
import threading |
|
import spaces |
|
import accelerate |
|
import time |
|
|
|
DESCRIPTION = ''' |
|
<div> |
|
<h1 style="text-align: center;">Krypton π</h1> |
|
<p>This uses an Open Source model from <a href="https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers"><b>xtuner/llava-llama-3-8b-v1_1-transformers</b></a></p> |
|
</div> |
|
''' |
|
|
|
model_id = "xtuner/llava-llama-3-8b-v1_1-transformers" |
|
model = LlavaForConditionalGeneration.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True |
|
) |
|
|
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
|
|
model.generation_config.eos_token_id = processor.tokenizer.eos_token_id |
|
|
|
@spaces.GPU(duration=120) |
|
def krypton(input, history): |
|
if input["files"]: |
|
image = input["files"][-1]["path"] if isinstance(input["files"][-1], dict) else input["files"][-1] |
|
else: |
|
image = None |
|
for hist in history: |
|
if isinstance(hist[0], tuple): |
|
image = hist[0][0] |
|
|
|
if not image: |
|
gr.Error("You need to upload an image for Krypton to work.") |
|
return |
|
|
|
prompt = f"user\n\n<image>\n{input['text']}\nassistant\n\n" |
|
image = Image.open(image) |
|
inputs = processor(prompt, images=image, return_tensors='pt').to(0, torch.float16) |
|
|
|
|
|
streamer = TextIteratorStreamer(processor.tokenizer, skip_special_tokens=False, skip_prompt=True) |
|
|
|
|
|
generation_kwargs = dict( |
|
inputs=inputs['input_ids'], |
|
attention_mask=inputs['attention_mask'], |
|
streamer=streamer, |
|
max_new_tokens=1024, |
|
do_sample=False |
|
) |
|
|
|
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
buffer = "" |
|
time.sleep(0.5) |
|
for new_text in streamer: |
|
buffer += new_text |
|
generated_text_without_prompt = buffer |
|
time.sleep(0.06) |
|
yield generated_text_without_prompt |