sandz7 commited on
Commit
0963b2f
Β·
1 Parent(s): f0270fa

placed processor tokenizer

Browse files
Files changed (1) hide show
  1. app.py +21 -78
app.py CHANGED
@@ -19,107 +19,50 @@ model = LlavaForConditionalGeneration.from_pretrained(
19
  model_id,
20
  torch_dtype=torch.float16,
21
  low_cpu_mem_usage=True
22
- ).to('cuda:0')
23
 
24
  processor = AutoProcessor.from_pretrained(model_id)
25
 
26
- model.generation_config.eos_token_id = 128009
 
27
 
28
  @spaces.GPU(duration=120)
29
- def krypton(input,
30
- history):
31
- """
32
- Recieves inputs (prompts with images if they were added),
33
- the image is formated for pil and prompt is formated for the model,
34
- to place it's output to the user, these prompts and images are passed in
35
- the processor and generation of the model, than the output is decoded from the processor,
36
- onto the UI.
37
- """
38
  if input["files"]:
39
- if type(input["files"][-1]) == dict:
40
- image = input["files"][-1]["path"]
41
- else:
42
- image = input["files"][-1]
43
  else:
44
- # If no images were passed now, look at the past images to keep up as reference still to the prompts
45
- # kept inside in tuples, the last one
46
  for hist in history:
47
- if type(hist[0]) == tuple:
48
  image = hist[0][0]
49
- try:
50
- if image is None:
51
- gr.Error("You need to upload an image please for krypton to work.")
52
- except NameError:
53
- # Image is not defined at all
54
- gr.Error("Uplaod an image for Krypton to work")
55
-
56
- prompt = ("<|start_header_id|>user<|end_header_id|>\n\n<image>\n{input['text']}<|eot_id|>"
57
- "<|start_header_id|>assistant<|end_header_id|>\n\n")
58
 
 
 
 
 
 
59
  image = Image.open(image)
60
- inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
61
-
62
  # Streamer
63
- streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True})
64
-
65
  # Generation kwargs
66
  generation_kwargs = dict(
67
- inputs=inputs,
 
68
  streamer=streamer,
69
  max_new_tokens=1024,
70
  do_sample=False
71
  )
72
-
73
  thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
74
  thread.start()
75
-
76
  buffer = ""
77
  time.sleep(0.5)
78
  for new_text in streamer:
79
- # find <|eot_id|> and remove it from the new_text
80
- if "<|eot_id|>" in new_text:
81
- new_text = new_text.split("<|eot_id|>")[0]
82
  buffer += new_text
83
-
84
- # generated_text_without_prompt = buffer[len(text_prompt):]
85
  generated_text_without_prompt = buffer
86
- # print(generated_text_without_prompt)
87
  time.sleep(0.06)
88
- # print(f"new_text: {generated_text_without_prompt}")
89
- yield generated_text_without_prompt
90
-
91
- chatbot=gr.Chatbot(height=600, label="Krypt AI")
92
- chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter your question or upload an image.", show_label=False)
93
- with gr.Blocks(fill_height=True) as demo:
94
- gr.Markdown(DESCRIPTION)
95
- gr.ChatInterface(
96
- fn=krypton,
97
- chatbot=chatbot,
98
- fill_height=True,
99
- # additional_inputs_accordion=gr.Accordion(label="βš™οΈ Parameters", open=False, render=False),
100
- # additional_inputs=[
101
- # gr.Slider(minimum=20,
102
- # maximum=80,
103
- # step=1,
104
- # value=50,
105
- # label="Max New Tokens",
106
- # render=False),
107
- # gr.Slider(minimum=0.0,
108
- # maximum=1.0,
109
- # step=0.1,
110
- # value=0.7,
111
- # label="Temperature",
112
- # render=False),
113
- # gr.Slider(minimum=1,
114
- # maximum=12,
115
- # step=1,
116
- # value=5,
117
- # label="Number of Beams",
118
- # render=False),
119
- # ],
120
- multimodal=True,
121
- textbox=chat_input,
122
- )
123
-
124
- demo.queue(api_open=False)
125
- demo.launch(show_api=False, share=False)
 
19
  model_id,
20
  torch_dtype=torch.float16,
21
  low_cpu_mem_usage=True
22
+ )
23
 
24
  processor = AutoProcessor.from_pretrained(model_id)
25
 
26
+ # Confirming and setting the eos_token_id (if necessary)
27
+ model.generation_config.eos_token_id = processor.tokenizer.eos_token_id
28
 
29
  @spaces.GPU(duration=120)
30
+ def krypton(input, history):
 
 
 
 
 
 
 
 
31
  if input["files"]:
32
+ image = input["files"][-1]["path"] if isinstance(input["files"][-1], dict) else input["files"][-1]
 
 
 
33
  else:
34
+ image = None
 
35
  for hist in history:
36
+ if isinstance(hist[0], tuple):
37
  image = hist[0][0]
 
 
 
 
 
 
 
 
 
38
 
39
+ if not image:
40
+ gr.Error("You need to upload an image for Krypton to work.")
41
+ return
42
+
43
+ prompt = f"user\n\n<image>\n{input['text']}\nassistant\n\n"
44
  image = Image.open(image)
45
+ inputs = processor(prompt, images=image, return_tensors='pt').to(0, torch.float16)
46
+
47
  # Streamer
48
+ streamer = TextIteratorStreamer(processor.tokenizer, skip_special_tokens=False, skip_prompt=True)
49
+
50
  # Generation kwargs
51
  generation_kwargs = dict(
52
+ inputs=inputs['input_ids'],
53
+ attention_mask=inputs['attention_mask'],
54
  streamer=streamer,
55
  max_new_tokens=1024,
56
  do_sample=False
57
  )
58
+
59
  thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
60
  thread.start()
61
+
62
  buffer = ""
63
  time.sleep(0.5)
64
  for new_text in streamer:
 
 
 
65
  buffer += new_text
 
 
66
  generated_text_without_prompt = buffer
 
67
  time.sleep(0.06)
68
+ yield generated_text_without_prompt