Spaces:
Sleeping
Sleeping
title: Feedback Topic Sentiment Transformer | |
emoji: π | |
colorFrom: blue | |
colorTo: green | |
sdk: gradio | |
sdk_version: 4.19.2 | |
app_file: app.py | |
pinned: false | |
# Feedback Topic & Sentiment Transformer | |
Transform feedback data with topic and sentiment columns into a binary matrix format. | |
## Features | |
- Upload Excel, CSV, or tab-delimited files | |
- Configure column prefixes for topics, sentiments, and categories | |
- Transform topics into binary columns (0/1) | |
- Associate sentiment scores with each topic | |
- Analyze topic frequency and sentiment distribution | |
- Download results as Excel or CSV | |
## Usage | |
1. Upload your feedback data file | |
2. Configure column prefixes | |
3. Click "Transform Data" | |
4. Download the transformed file | |
## Input Format | |
Your file should contain: | |
- Topic columns (e.g., `[**WORKSHOP] SwissLife Taxonomy`) | |
- Sentiment columns (e.g., `ABSA:Sentiment`) | |
- Category columns (e.g., `Categories:`) | |
- Text column (optional) | |
- Recommendation column (optional) | |
## Output Format | |
The transformed file includes: | |
- `feedback_id`: Unique identifier | |
- Topic columns: Binary values (0/1) | |
- Sentiment columns: Scores (1=positive, 0.5=neutral, 0=negative) | |
- Original text and recommendation scores (if available) |