sanbo
update sth. at 2025-01-16 22:16:33
979bfc3
raw
history blame
1.97 kB
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModel
import torch
from typing import List, Dict
import uvicorn
# 定义请求和响应模型
class EmbeddingRequest(BaseModel):
input: str
model: str = "jinaai/jina-embeddings-v3"
class EmbeddingResponse(BaseModel):
status: str
embeddings: List[List[float]]
# 创建FastAPI应用
app = FastAPI(
title="Jina Embeddings API",
description="Text embedding generation service using jina-embeddings-v3",
version="1.0.0"
)
# 加载模型和分词器
model_name = "jinaai/jina-embeddings-v3"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
@app.post("/generate_embeddings", response_model=EmbeddingResponse)
@app.post("/api/v1/embeddings", response_model=EmbeddingResponse)
@app.post("/hf/v1/embeddings", response_model=EmbeddingResponse)
@app.post("/api/v1/chat/completions", response_model=EmbeddingResponse)
@app.post("/hf/v1/chat/completions", response_model=EmbeddingResponse)
async def generate_embeddings(request: EmbeddingRequest):
try:
# 使用分词器处理输入文本
inputs = tokenizer(request.input, return_tensors="pt", truncation=True, max_length=512)
# 生成嵌入
with torch.no_grad():
embeddings = model(**inputs).last_hidden_state.mean(dim=1)
return EmbeddingResponse(
status="success",
embeddings=embeddings.numpy().tolist()
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/")
async def root():
return {
"status": "active",
"model": model_name,
"usage": "Send POST request to /generate_embeddings or /api/v1/embeddings or /hf/v1/embeddings"
}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)