from fastai.vision.all import * | |
import gradio as gr | |
classifier=load_learner("model.pkl") | |
labels = classifier.dls.vocab | |
def classify_image(img): | |
img = PILImage.create(img) | |
pred,pred_ix,pred_prob = classifier.predict(img) | |
return dict(zip(labels,map(float,pred_prob))) | |
images = gr.inputs.Image(shape=(192,192)) | |
label = gr.outputs.Label(num_top_classes=4) | |
examples = ['airplane.jpg','helicopter.jpg','missile.jpg','rocketship.jpg'] | |
intr = gr.Interface(fn = classify_image,inputs=images,outputs=label,examples=examples) | |
intr.launch(inline=False) |