from fastai.vision.all import * import gradio as gr classifier=load_learner("model.pkl") labels = classifier.dls.vocab def classify_image(img): img = PILImage.create(img) pred,pred_ix,pred_prob = classifier.predict(img) return dict(zip(labels,map(float,pred_prob))) images = gr.inputs.Image(shape=(192,192)) label = gr.outputs.Label(num_top_classes=4) examples = ['airplane.jpg','helicopter.jpg','missile.jpg','rocketship.jpg'] intr = gr.Interface(fn = classify_image,inputs=images,outputs=label,examples=examples) intr.launch(inline=False)