Spaces:
Sleeping
Sleeping
from scenario import numerize | |
import streamlit as st | |
import pandas as pd | |
import json | |
from scenario import Channel, Scenario | |
import numpy as np | |
from plotly.subplots import make_subplots | |
import plotly.graph_objects as go | |
from scenario import class_to_dict | |
from collections import OrderedDict | |
import io | |
import plotly | |
from pathlib import Path | |
import pickle | |
import yaml | |
from yaml import SafeLoader | |
from streamlit.components.v1 import html | |
import smtplib | |
from scipy.optimize import curve_fit | |
from sklearn.metrics import r2_score | |
from scenario import class_from_dict | |
from utilities import retrieve_pkl_object | |
import os | |
import base64 | |
# # schema = db_cred["schema"] | |
color_palette = [ | |
"#F3F3F0", | |
"#5E7D7E", | |
"#2FA1FF", | |
"#00EDED", | |
"#00EAE4", | |
"#304550", | |
"#EDEBEB", | |
"#7FBEFD", | |
"#003059", | |
"#A2F3F3", | |
"#E1D6E2", | |
"#B6B6B6", | |
] | |
CURRENCY_INDICATOR = "$" | |
if "project_dct" not in st.session_state or "project_number" not in st.session_state: | |
st.error( | |
"No tuned model available. Please build and tune a model to generate response curves." | |
) | |
st.stop() | |
tuned_model = retrieve_pkl_object( | |
st.session_state["project_number"], "Model_Tuning", "tuned_model" | |
) | |
if tuned_model is None: | |
st.error( | |
"No tuned model available. Please build and tune a model to generate response curves." | |
) | |
st.stop() | |
def load_authenticator(): | |
with open("config.yaml") as file: | |
config = yaml.load(file, Loader=SafeLoader) | |
st.session_state["config"] = config | |
authenticator = stauth.Authenticate( | |
config["credentials"], | |
config["cookie"]["name"], | |
config["cookie"]["key"], | |
config["cookie"]["expiry_days"], | |
config["preauthorized"], | |
) | |
st.session_state["authenticator"] = authenticator | |
return authenticator | |
def nav_page(page_name, timeout_secs=3): | |
nav_script = """ | |
<script type="text/javascript"> | |
function attempt_nav_page(page_name, start_time, timeout_secs) { | |
var links = window.parent.document.getElementsByTagName("a"); | |
for (var i = 0; i < links.length; i++) { | |
if (links[i].href.toLowerCase().endsWith("/" + page_name.toLowerCase())) { | |
links[i].click(); | |
return; | |
} | |
} | |
var elasped = new Date() - start_time; | |
if (elasped < timeout_secs * 1000) { | |
setTimeout(attempt_nav_page, 100, page_name, start_time, timeout_secs); | |
} else { | |
alert("Unable to navigate to page '" + page_name + "' after " + timeout_secs + " second(s)."); | |
} | |
} | |
window.addEventListener("load", function() { | |
attempt_nav_page("?", new Date(), %d); | |
}); | |
</script> | |
""" % ( | |
page_name, | |
timeout_secs, | |
) | |
html(nav_script) | |
# def load_local_css(file_name): | |
# with open(file_name) as f: | |
# st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True) | |
# def set_header(): | |
# return st.markdown(f"""<div class='main-header'> | |
# <h1>MMM LiME</h1> | |
# <img src="https://assets-global.website-files.com/64c8fffb0e95cbc525815b79/64df84637f83a891c1473c51_Vector%20(Stroke).svg "> | |
# </div>""", unsafe_allow_html=True) | |
path = os.path.dirname(__file__) | |
file_ = open(f"{path}/logo.png", "rb") | |
contents = file_.read() | |
data_url = base64.b64encode(contents).decode("utf-8") | |
file_.close() | |
DATA_PATH = "./data" | |
IMAGES_PATH = "./data/images_224_224" | |
# is_panel = True if len(panel_col) > 0 else False | |
# manoj | |
is_panel = False | |
date_col = "Date" | |
# is_panel = False # flag if set to true - do panel level response curves | |
def load_local_css(file_name): | |
with open(file_name) as f: | |
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True) | |
# def set_header(): | |
# return st.markdown(f"""<div class='main-header'> | |
# <h1>H & M Recommendations</h1> | |
# <img src="data:image;base64,{data_url}", alt="Logo"> | |
# </div>""", unsafe_allow_html=True) | |
path1 = os.path.dirname(__file__) | |
# file_1 = open(f"{path}/willbank.png", "rb") | |
# contents1 = file_1.read() | |
# data_url1 = base64.b64encode(contents1).decode("utf-8") | |
# file_1.close() | |
DATA_PATH1 = "./data" | |
IMAGES_PATH1 = "./data/images_224_224" | |
def set_header(): | |
return st.markdown( | |
f"""<div class='main-header'> | |
<!-- <h1></h1> --> | |
<div > | |
<img class='blend-logo' src="data:image;base64,{data_url}", alt="Logo"> | |
</div> | |
<img class='blend-logo' src="data:image;base64,{data_url}", alt="Logo"> | |
</div>""", | |
unsafe_allow_html=True, | |
) | |
# def set_header(): | |
# logo_path = "./path/to/your/local/LIME_logo.png" # Replace with the actual file path | |
# text = "LiME" | |
# return st.markdown(f"""<div class='main-header'> | |
# <img src="data:image/png;base64,{data_url}" alt="Logo" style="float: left; margin-right: 10px; width: 100px; height: auto;"> | |
# <h1>{text}</h1> | |
# </div>""", unsafe_allow_html=True) | |
def s_curve(x, K, b, a, x0): | |
return K / (1 + b * np.exp(-a * (x - x0))) | |
def overview_test_data_prep_panel(X, df, spends_X, date_col, panel_col, target_col): | |
""" | |
function to create the data which is used in initialize data fn | |
X : X test with contributions | |
df : originally uploaded data (media data) which has raw vars | |
spends_X : spends of dates in X test | |
""" | |
channels = st.session_state["channels"] | |
channel_list = channels.keys() | |
# map transformed variable to raw variable name & channel name | |
# mapping eg : paid_search_clicks_lag_2 (transformed var) --> paid_search_clicks (raw var) --> paid_search (channel) | |
variables = {} | |
channel_and_variables = {} | |
new_variables = {} | |
new_channels_and_variables = {} | |
for transformed_var in [ | |
col | |
for col in X.drop(columns=[date_col, panel_col, target_col, "pred"]).columns | |
if "_contr" not in col | |
]: | |
if len([col for col in df.columns if col in transformed_var]) == 1: | |
raw_var = [col for col in df.columns if col in transformed_var][0] | |
variables[transformed_var] = raw_var | |
# Check if the list comprehension result is not empty before accessing the first element | |
channels_list = [ | |
channel for channel, raw_vars in channels.items() if raw_var in raw_vars | |
] | |
if channels_list: | |
channel_and_variables[raw_var] = channels_list[0] | |
else: | |
# Handle the case where channels_list is empty | |
# You might want to set a default value or handle it according to your use case | |
channel_and_variables[raw_var] = None | |
else: | |
new_variables[transformed_var] = transformed_var | |
new_channels_and_variables[transformed_var] = "base" | |
# Raw DF | |
raw_X = pd.merge( | |
X[[date_col, panel_col]], | |
df[[date_col, panel_col] + list(variables.values())], | |
how="left", | |
on=[date_col, panel_col], | |
) | |
assert len(raw_X) == len(X) | |
raw_X_cols = [] | |
for i in raw_X.columns: | |
if i in channel_and_variables.keys(): | |
raw_X_cols.append(channel_and_variables[i]) | |
else: | |
raw_X_cols.append(i) | |
raw_X.columns = raw_X_cols | |
# Contribution DF | |
contr_X = X[ | |
[date_col, panel_col] | |
+ [col for col in X.columns if "_contr" in col and "sum_" not in col] | |
].copy() | |
# if "base_contr" in contr_X.columns: | |
# contr_X.rename(columns={'base_contr':'const_contr'},inplace=True) | |
# # new_variables = [ | |
# col | |
# for col in contr_X.columns | |
# if "_flag" in col.lower() or "trend" in col.lower() or "sine" in col.lower() | |
# ] | |
# if len(new_variables) > 0: | |
# contr_X["const"] = contr_X[["panel_effect"] + new_variables].sum(axis=1) | |
# contr_X.drop(columns=["panel_effect"], inplace=True) | |
# contr_X.drop(columns=new_variables, inplace=True) | |
# else: | |
# contr_X.rename(columns={"panel_effect": "const"}, inplace=True) | |
new_contr_X_cols = [] | |
for col in contr_X.columns: | |
col_clean = col.replace("_contr", "") | |
new_contr_X_cols.append(col_clean) | |
contr_X.columns = new_contr_X_cols | |
contr_X_cols = [] | |
for i in contr_X.columns: | |
if i in variables.keys(): | |
contr_X_cols.append(channel_and_variables[variables[i]]) | |
else: | |
contr_X_cols.append(i) | |
contr_X.columns = contr_X_cols | |
# Spends DF | |
spends_X.columns = [col.replace("_cost", "") for col in spends_X.columns] | |
raw_X.rename(columns={"date": "Date"}, inplace=True) | |
contr_X.rename(columns={"date": "Date"}, inplace=True) | |
spends_X.rename(columns={"date": "Week"}, inplace=True) | |
spends_X.columns = [ | |
col.replace("spends_", "") if col.startswith("spends_") else col | |
for col in spends_X.columns | |
] | |
# Rename column to 'Date' | |
spends_X.rename(columns={"Week": "Date"}, inplace=True) | |
# Remove "response_metric_" from the start and "_total" from the end | |
if str(target_col).startswith("response_metric_"): | |
target_col = target_col.replace("response_metric_", "", 1) | |
# Remove the last 6 characters (length of "_total") | |
if str(target_col).endswith("_total"): | |
target_col = target_col[:-6] | |
# Rename column to 'Date' | |
spends_X.rename(columns={"Week": "Date"}, inplace=True) | |
# Save raw, spends and contribution data | |
st.session_state["project_dct"]["current_media_performance"]["model_outputs"][ | |
target_col | |
] = { | |
"raw_data": raw_X, | |
"contribution_data": contr_X, | |
"spends_data": spends_X, | |
} | |
# Clear page metadata | |
st.session_state["project_dct"]["scenario_planner"]["original_metadata_file"] = None | |
st.session_state["project_dct"]["response_curves"]["original_metadata_file"] = None | |
# st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"] = None | |
# st.session_state["project_dct"]["response_curves"]["modified_metadata_file"] = None | |
def overview_test_data_prep_nonpanel(X, df, spends_X, date_col, target_col): | |
""" | |
function to create the data which is used in initialize data fn | |
""" | |
# with open( | |
# os.path.join(st.session_state["project_path"], "channel_groups.pkl"), "rb" | |
# ) as f: | |
# channels = pickle.load(f) | |
# channel_list = list(channels.keys()) | |
channels = st.session_state["channels"] | |
channel_list = channels.keys() | |
# map transformed variable to raw variable name & channel name | |
# mapping eg : paid_search_clicks_lag_2 (transformed var) --> paid_search_clicks (raw var) --> paid_search (channel) | |
variables = {} | |
channel_and_variables = {} | |
new_variables = {} | |
new_channels_and_variables = {} | |
cols_to_del = list( | |
set([date_col, target_col, "pred"]).intersection((set(X.columns))) | |
) | |
# remove exog cols from RAW data (exog cols are part of base, raw data needs media vars only) | |
all_exog_vars = st.session_state["bin_dict"]["Exogenous"] | |
all_exog_vars = [ | |
var.lower() | |
.replace(".", "_") | |
.replace("@", "_") | |
.replace(" ", "_") | |
.replace("-", "") | |
.replace(":", "") | |
.replace("__", "_") | |
for var in all_exog_vars | |
] | |
exog_cols = [] | |
if len(all_exog_vars) > 0: | |
for col in X.columns: | |
if len([exog_var for exog_var in all_exog_vars if exog_var in col]) > 0: | |
exog_cols.append(col) | |
cols_to_del = cols_to_del + exog_cols | |
for transformed_var in [ | |
col for col in X.drop(columns=cols_to_del).columns if "_contr" not in col | |
]: # also has 'const' | |
if ( | |
len([col for col in df.columns if col in transformed_var]) == 1 | |
): # col is raw var | |
raw_var = [col for col in df.columns if col in transformed_var][0] | |
variables[transformed_var] = raw_var | |
channel_and_variables[raw_var] = [ | |
channel for channel, raw_vars in channels.items() if raw_var in raw_vars | |
][0] | |
else: # when no corresponding raw var then base | |
new_variables[transformed_var] = transformed_var | |
new_channels_and_variables[transformed_var] = "base" | |
# Raw DF | |
raw_X = pd.merge( | |
X[[date_col]], | |
df[[date_col] + list(variables.values())], | |
how="left", | |
on=[date_col], | |
) | |
assert len(raw_X) == len(X) | |
raw_X_cols = [] | |
for i in raw_X.columns: | |
if i in channel_and_variables.keys(): | |
raw_X_cols.append(channel_and_variables[i]) | |
else: | |
raw_X_cols.append(i) | |
raw_X.columns = raw_X_cols | |
# Contribution DF | |
contr_X = X[ | |
[date_col] + [col for col in X.columns if "_contr" in col and "sum_" not in col] | |
].copy() | |
new_variables = [ | |
col | |
for col in contr_X.columns | |
if "_flag" in col.lower() or "trend" in col.lower() or "sine" in col.lower() | |
] | |
if ( | |
len(new_variables) > 0 | |
): # if new vars are available, their contributions should be added to base (called const) | |
contr_X["const_contr"] = contr_X[["const_contr"] + new_variables].sum(axis=1) | |
contr_X.drop(columns=new_variables, inplace=True) | |
new_contr_X_cols = [] | |
for col in contr_X.columns: | |
col_clean = col.replace("_contr", "") | |
new_contr_X_cols.append(col_clean) | |
contr_X.columns = new_contr_X_cols | |
contr_X_cols = [] | |
for i in contr_X.columns: | |
if i in variables.keys(): | |
contr_X_cols.append(channel_and_variables[variables[i]]) | |
else: | |
contr_X_cols.append(i) | |
contr_X.columns = contr_X_cols | |
# Spends DF | |
# spends_X.columns = [ | |
# col.replace("_cost", "").replace("_spends", "").replace("_spend", "") | |
# for col in spends_X.columns | |
# ] | |
spends_X_col_map = { | |
col: bucket | |
for col in spends_X.columns | |
for bucket in channels.keys() | |
if col in channels[bucket] | |
} | |
spends_X.rename(columns=spends_X_col_map, inplace=True) | |
raw_X.rename(columns={"date": "Date"}, inplace=True) | |
contr_X.rename(columns={"date": "Date"}, inplace=True) | |
spends_X.rename(columns={"date": "Week"}, inplace=True) | |
spends_X.columns = [ | |
col.replace("spends_", "") if col.startswith("spends_") else col | |
for col in spends_X.columns | |
] | |
# Rename column to 'Date' | |
spends_X.rename(columns={"Week": "Date"}, inplace=True) | |
# Remove "response_metric_" from the start and "_total" from the end | |
if str(target_col).startswith("response_metric_"): | |
target_col = target_col.replace("response_metric_", "", 1) | |
# Remove the last 6 characters (length of "_total") | |
if str(target_col).endswith("_total"): | |
target_col = target_col[:-6] | |
# Rename column to 'Date' | |
spends_X.rename(columns={"Week": "Date"}, inplace=True) | |
# Save raw, spends and contribution data | |
st.session_state["project_dct"]["current_media_performance"]["model_outputs"][ | |
target_col | |
] = { | |
"raw_data": raw_X, | |
"contribution_data": contr_X, | |
"spends_data": spends_X, | |
} | |
# Clear page metadata | |
st.session_state["project_dct"]["scenario_planner"]["original_metadata_file"] = None | |
st.session_state["project_dct"]["response_curves"]["original_metadata_file"] = None | |
# st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"] = None | |
# st.session_state["project_dct"]["response_curves"]["modified_metadata_file"] = None | |
def initialize_data_cmp(target_col, is_panel, panel_col, start_date, end_date): | |
start_date = pd.to_datetime(start_date) | |
end_date = pd.to_datetime(end_date) | |
# Remove "response_metric_" from the start and "_total" from the end | |
if str(target_col).startswith("response_metric_"): | |
target_col = target_col.replace("response_metric_", "", 1) | |
# Remove the last 6 characters (length of "_total") | |
if str(target_col).endswith("_total"): | |
target_col = target_col[:-6] | |
# Extract dataframes for raw data, spend input, and contribution data | |
raw_df = st.session_state["project_dct"]["current_media_performance"][ | |
"model_outputs" | |
][target_col]["raw_data"] | |
spend_df = st.session_state["project_dct"]["current_media_performance"][ | |
"model_outputs" | |
][target_col]["spends_data"] | |
contri_df = st.session_state["project_dct"]["current_media_performance"][ | |
"model_outputs" | |
][target_col]["contribution_data"] | |
# Remove unnecessary columns | |
unnamed_cols = [col for col in raw_df.columns if col.lower().startswith("unnamed")] | |
exclude_columns = ["Date"] + unnamed_cols | |
if is_panel: | |
exclude_columns = exclude_columns + [panel_col] | |
# Aggregate all 3 dfs to date level (from date-panel level) | |
raw_df[date_col] = pd.to_datetime(raw_df[date_col]) | |
raw_df = raw_df[raw_df[date_col] >= start_date] | |
raw_df = raw_df[raw_df[date_col] <= end_date].reset_index(drop=True) | |
raw_df_aggregations = {c: "sum" for c in raw_df.columns if c not in exclude_columns} | |
raw_df = raw_df.groupby(date_col).agg(raw_df_aggregations).reset_index() | |
contri_df[date_col] = pd.to_datetime(contri_df[date_col]) | |
contri_df = contri_df[contri_df[date_col] >= start_date] | |
contri_df = contri_df[contri_df[date_col] <= end_date].reset_index(drop=True) | |
contri_df_aggregations = { | |
c: "sum" for c in contri_df.columns if c not in exclude_columns | |
} | |
contri_df = contri_df.groupby(date_col).agg(contri_df_aggregations).reset_index() | |
input_df = raw_df.sort_values(by=[date_col]) | |
output_df = contri_df.sort_values(by=[date_col]) | |
spend_df["Date"] = pd.to_datetime( | |
spend_df["Date"], format="%Y-%m-%d", errors="coerce" | |
) | |
spend_df = spend_df[spend_df["Date"] >= start_date] | |
spend_df = spend_df[spend_df["Date"] <= end_date].reset_index(drop=True) | |
spend_df_aggregations = { | |
c: "sum" for c in spend_df.columns if c not in exclude_columns | |
} | |
spend_df = spend_df.groupby("Date").agg(spend_df_aggregations).reset_index() | |
# spend_df['Week'] = pd.to_datetime(spend_df['Week'], errors='coerce') | |
# spend_df = spend_df.sort_values(by='Week') | |
channel_list = [col for col in input_df.columns if col not in exclude_columns] | |
response_curves = {} | |
mapes = {} | |
rmses = {} | |
upper_limits = {} | |
powers = {} | |
r2 = {} | |
conv_rates = {} | |
output_cols = [] | |
channels = {} | |
sales = None | |
dates = input_df.Date.values | |
actual_output_dic = {} | |
actual_input_dic = {} | |
# channel_list=['programmatic'] | |
infeasible_channels = [ | |
c | |
for c in contri_df.select_dtypes(include=["float", "int"]).columns | |
if contri_df[c].sum() <= 0 | |
] | |
channel_list = list(set(channel_list) - set(infeasible_channels)) | |
for inp_col in channel_list: | |
spends = input_df[inp_col].values | |
x = spends.copy() | |
# upper limit for penalty | |
upper_limits[inp_col] = 2 * x.max() | |
out_col = inp_col | |
y = output_df[out_col].values.copy() | |
actual_output_dic[inp_col] = y.copy() | |
actual_input_dic[inp_col] = x.copy() | |
##output cols aggregation | |
output_cols.append(out_col) | |
## scale the input | |
power = np.ceil(np.log(x.max()) / np.log(10)) - 3 | |
if power >= 0: | |
x = x / 10**power | |
x = x.astype("float64") | |
y = y.astype("float64") | |
if y.max() <= 0.01: | |
bounds = ( | |
(0, 0, 0, 0), | |
(3 * 0.01, 1000, 1, x.max() if x.max() > 0 else 0.01), | |
) | |
else: | |
bounds = ((0, 0, 0, 0), (3 * y.max(), 1000, 1, x.max())) | |
params, _ = curve_fit( | |
s_curve, | |
x, | |
y, | |
p0=(2 * y.max(), 0.01, 1e-5, x.max()), | |
bounds=bounds, | |
maxfev=int(1e5), | |
) | |
mape = (100 * abs(1 - s_curve(x, *params) / y.clip(min=1))).mean() | |
rmse = np.sqrt(((y - s_curve(x, *params)) ** 2).mean()) | |
r2_ = r2_score(y, s_curve(x, *params)) | |
response_curves[inp_col] = { | |
"K": params[0], | |
"b": params[1], | |
"a": params[2], | |
"x0": params[3], | |
} | |
mapes[inp_col] = mape | |
rmses[inp_col] = rmse | |
r2[inp_col] = r2_ | |
powers[inp_col] = power | |
conv = spend_df[inp_col].sum() / max(input_df[inp_col].sum(), 1e-9) | |
conv_rates[inp_col] = conv | |
channel = Channel( | |
name=inp_col, | |
dates=dates, | |
spends=spends, | |
# conversion_rate = np.mean(list(conv_rates[inp_col].values())), | |
conversion_rate=conv_rates[inp_col], | |
response_curve_type="s-curve", | |
response_curve_params={ | |
"K": params[0], | |
"b": params[1], | |
"a": params[2], | |
"x0": params[3], | |
}, | |
bounds=np.array([-10, 10]), | |
correction=y - s_curve(x, *params), | |
) | |
channels[inp_col] = channel | |
if sales is None: | |
sales = channel.actual_sales | |
else: | |
sales += channel.actual_sales | |
other_contributions = ( | |
output_df.drop([*output_cols], axis=1).sum(axis=1, numeric_only=True).values | |
) | |
correction = output_df.drop(["Date"], axis=1).sum(axis=1).values - ( | |
sales + other_contributions | |
) | |
# Testing | |
# scenario_test_df = pd.DataFrame( | |
# columns=["other_contributions", "correction", "sales"] | |
# ) | |
# scenario_test_df["other_contributions"] = other_contributions | |
# scenario_test_df["correction"] = correction | |
# scenario_test_df["sales"] = sales | |
# scenario_test_df.to_csv("test\scenario_test_df.csv", index=False) | |
# output_df.to_csv("test\output_df.csv", index=False) | |
scenario = Scenario( | |
name="default", | |
channels=channels, | |
constant=other_contributions, | |
correction=correction, | |
) | |
## setting session variables | |
st.session_state["initialized"] = True | |
st.session_state["actual_df"] = input_df | |
st.session_state["raw_df"] = raw_df | |
st.session_state["contri_df"] = output_df | |
default_scenario_dict = class_to_dict(scenario) | |
st.session_state["default_scenario_dict"] = default_scenario_dict | |
st.session_state["scenario"] = scenario | |
st.session_state["channels_list"] = channel_list | |
st.session_state["optimization_channels"] = { | |
channel_name: False for channel_name in channel_list | |
} | |
st.session_state["rcs"] = response_curves | |
# orig_rcs_path = os.path.join( | |
# st.session_state["project_path"], f"orig_rcs_{target_col}_{panel_col}.json" | |
# ) | |
# if Path(orig_rcs_path).exists(): | |
# with open(orig_rcs_path, "r") as f: | |
# st.session_state["orig_rcs"] = json.load(f) | |
# else: | |
# st.session_state["orig_rcs"] = response_curves.copy() | |
# with open(orig_rcs_path, "w") as f: | |
# json.dump(st.session_state["orig_rcs"], f) | |
st.session_state["powers"] = powers | |
st.session_state["actual_contribution_df"] = pd.DataFrame(actual_output_dic) | |
st.session_state["actual_input_df"] = pd.DataFrame(actual_input_dic) | |
for channel in channels.values(): | |
st.session_state[channel.name] = numerize( | |
channel.actual_total_spends * channel.conversion_rate, 1 | |
) | |
# st.session_state["xlsx_buffer"] = io.BytesIO() | |
# | |
# if Path("../saved_scenarios.pkl").exists(): | |
# with open("../saved_scenarios.pkl", "rb") as f: | |
# st.session_state["saved_scenarios"] = pickle.load(f) | |
# else: | |
# st.session_state["saved_scenarios"] = OrderedDict() | |
# | |
# st.session_state["total_spends_change"] = 0 | |
# st.session_state["optimization_channels"] = { | |
# channel_name: False for channel_name in channel_list | |
# } | |
# st.session_state["disable_download_button"] = True | |
# def initialize_data(): | |
# # fetch data from excel | |
# output = pd.read_excel('data.xlsx',sheet_name=None) | |
# raw_df = output['RAW DATA MMM'] | |
# contribution_df = output['CONTRIBUTION MMM'] | |
# Revenue_df = output['Revenue'] | |
# ## channels to be shows | |
# channel_list = [] | |
# for col in raw_df.columns: | |
# if 'click' in col.lower() or 'spend' in col.lower() or 'imp' in col.lower(): | |
# | |
# channel_list.append(col) | |
# else: | |
# pass | |
# ## NOTE : Considered only Desktop spends for all calculations | |
# acutal_df = raw_df[raw_df.Region == 'Desktop'].copy() | |
# ## NOTE : Considered one year of data | |
# acutal_df = acutal_df[acutal_df.Date>'2020-12-31'] | |
# actual_df = acutal_df.drop('Region',axis=1).sort_values(by='Date')[[*channel_list,'Date']] | |
# ##load response curves | |
# with open('./grammarly_response_curves.json','r') as f: | |
# response_curves = json.load(f) | |
# ## create channel dict for scenario creation | |
# dates = actual_df.Date.values | |
# channels = {} | |
# rcs = {} | |
# constant = 0. | |
# for i,info_dict in enumerate(response_curves): | |
# name = info_dict.get('name') | |
# response_curve_type = info_dict.get('response_curve') | |
# response_curve_params = info_dict.get('params') | |
# rcs[name] = response_curve_params | |
# if name != 'constant': | |
# spends = actual_df[name].values | |
# channel = Channel(name=name,dates=dates, | |
# spends=spends, | |
# response_curve_type=response_curve_type, | |
# response_curve_params=response_curve_params, | |
# bounds=np.array([-30,30])) | |
# channels[name] = channel | |
# else: | |
# constant = info_dict.get('value',0.) * len(dates) | |
# ## create scenario | |
# scenario = Scenario(name='default', channels=channels, constant=constant) | |
# default_scenario_dict = class_to_dict(scenario) | |
# ## setting session variables | |
# st.session_state['initialized'] = True | |
# st.session_state['actual_df'] = actual_df | |
# st.session_state['raw_df'] = raw_df | |
# st.session_state['default_scenario_dict'] = default_scenario_dict | |
# st.session_state['scenario'] = scenario | |
# st.session_state['channels_list'] = channel_list | |
# st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list} | |
# st.session_state['rcs'] = rcs | |
# for channel in channels.values(): | |
# if channel.name not in st.session_state: | |
# st.session_state[channel.name] = float(channel.actual_total_spends) | |
# if 'xlsx_buffer' not in st.session_state: | |
# st.session_state['xlsx_buffer'] = io.BytesIO() | |
# ## for saving scenarios | |
# if 'saved_scenarios' not in st.session_state: | |
# if Path('../saved_scenarios.pkl').exists(): | |
# with open('../saved_scenarios.pkl','rb') as f: | |
# st.session_state['saved_scenarios'] = pickle.load(f) | |
# else: | |
# st.session_state['saved_scenarios'] = OrderedDict() | |
# if 'total_spends_change' not in st.session_state: | |
# st.session_state['total_spends_change'] = 0 | |
# if 'optimization_channels' not in st.session_state: | |
# st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list} | |
# if 'disable_download_button' not in st.session_state: | |
# st.session_state['disable_download_button'] = True | |
def create_channel_summary(scenario, target_column): | |
def round_off(x, round_off_decimal=0): | |
# round off | |
try: | |
x = float(x) | |
if x < 1 and x > 0: | |
round_off_decimal = int(np.floor(np.abs(np.log10(x)))) + max( | |
round_off_decimal, 1 | |
) | |
x = np.round(x, round_off_decimal) | |
elif x < 0 and x > -1: | |
round_off_decimal = int(np.floor(np.abs(np.log10(np.abs(x))))) + max( | |
round_off_decimal, 1 | |
) | |
x = -np.round(x, round_off_decimal) | |
else: | |
x = np.round(x, round_off_decimal) | |
return x | |
except: | |
return x | |
summary_columns = [] | |
actual_spends_rows = [] | |
actual_sales_rows = [] | |
actual_roi_rows = [] | |
for channel in scenario.channels.values(): | |
name_mod = channel.name.replace("_", " ") | |
if name_mod.lower().endswith(" imp"): | |
name_mod = name_mod.replace("Imp", " Impressions") | |
summary_columns.append(name_mod) | |
actual_spends_rows.append( | |
format_numbers(float(channel.actual_total_spends * channel.conversion_rate)) | |
) | |
actual_sales_rows.append(format_numbers((float(channel.actual_total_sales)))) | |
roi = (channel.actual_total_sales) / ( | |
channel.actual_total_spends * channel.conversion_rate | |
) | |
if roi < 0.0001: | |
roi = 0 | |
actual_roi_rows.append( | |
decimal_formater( | |
str(round_off(roi, 2)), | |
n_decimals=2, | |
) | |
) | |
actual_summary_df = pd.DataFrame( | |
[ | |
summary_columns, | |
actual_spends_rows, | |
actual_sales_rows, | |
actual_roi_rows, | |
] | |
).T | |
actual_summary_df.columns = ["Channel", "Spends", target_column, "ROI"] | |
actual_summary_df[target_column] = actual_summary_df[target_column].map( | |
lambda x: str(x)[1:] | |
) | |
return actual_summary_df | |
# def create_channel_summary(scenario): | |
# | |
# # Provided data | |
# data = { | |
# 'Channel': ['Paid Search', 'Ga will cid baixo risco', 'Digital tactic others', 'Fb la tier 1', 'Fb la tier 2', 'Paid social others', 'Programmatic', 'Kwai', 'Indicacao', 'Infleux', 'Influencer'], | |
# 'Spends': ['$ 11.3K', '$ 155.2K', '$ 50.7K', '$ 125.4K', '$ 125.2K', '$ 105K', '$ 3.3M', '$ 47.5K', '$ 55.9K', '$ 632.3K', '$ 48.3K'], | |
# 'Revenue': ['558.0K', '3.5M', '5.2M', '3.1M', '3.1M', '2.1M', '20.8M', '1.6M', '728.4K', '22.9M', '4.8M'] | |
# } | |
# | |
# # Create DataFrame | |
# df = pd.DataFrame(data) | |
# | |
# # Convert currency strings to numeric values | |
# df['Spends'] = df['Spends'].replace({'\$': '', 'K': '*1e3', 'M': '*1e6'}, regex=True).map(pd.eval).astype(int) | |
# df['Revenue'] = df['Revenue'].replace({'\$': '', 'K': '*1e3', 'M': '*1e6'}, regex=True).map(pd.eval).astype(int) | |
# | |
# # Calculate ROI | |
# df['ROI'] = ((df['Revenue'] - df['Spends']) / df['Spends']) | |
# | |
# # Format columns | |
# format_currency = lambda x: f"${x:,.1f}" | |
# format_roi = lambda x: f"{x:.1f}" | |
# | |
# df['Spends'] = ['$ 11.3K', '$ 155.2K', '$ 50.7K', '$ 125.4K', '$ 125.2K', '$ 105K', '$ 3.3M', '$ 47.5K', '$ 55.9K', '$ 632.3K', '$ 48.3K'] | |
# df['Revenue'] = ['$ 536.3K', '$ 3.4M', '$ 5M', '$ 3M', '$ 3M', '$ 2M', '$ 20M', '$ 1.5M', '$ 7.1M', '$ 22M', '$ 4.6M'] | |
# df['ROI'] = df['ROI'].apply(format_roi) | |
# | |
# return df | |
# @st.cache_resource() | |
# def create_contribution_pie(_scenario): | |
# colors_map = { | |
# col: color | |
# for col, color in zip( | |
# st.session_state["channels_list"], | |
# plotly.colors.n_colors( | |
# plotly.colors.hex_to_rgb("#BE6468"), | |
# plotly.colors.hex_to_rgb("#E7B8B7"), | |
# 20, | |
# ), | |
# ) | |
# } | |
# total_contribution_fig = make_subplots( | |
# rows=1, | |
# cols=2, | |
# subplot_titles=["Spends", "Revenue"], | |
# specs=[[{"type": "pie"}, {"type": "pie"}]], | |
# ) | |
# total_contribution_fig.add_trace( | |
# go.Pie( | |
# labels=[ | |
# channel_name_formating(channel_name) | |
# for channel_name in st.session_state["channels_list"] | |
# ] | |
# + ["Non Media"], | |
# values=[ | |
# round( | |
# _scenario.channels[channel_name].actual_total_spends | |
# * _scenario.channels[channel_name].conversion_rate, | |
# 1, | |
# ) | |
# for channel_name in st.session_state["channels_list"] | |
# ] | |
# + [0], | |
# marker=dict( | |
# colors=[ | |
# plotly.colors.label_rgb(colors_map[channel_name]) | |
# for channel_name in st.session_state["channels_list"] | |
# ] | |
# + ["#F0F0F0"] | |
# ), | |
# hole=0.3, | |
# ), | |
# row=1, | |
# col=1, | |
# ) | |
# total_contribution_fig.add_trace( | |
# go.Pie( | |
# labels=[ | |
# channel_name_formating(channel_name) | |
# for channel_name in st.session_state["channels_list"] | |
# ] | |
# + ["Non Media"], | |
# values=[ | |
# _scenario.channels[channel_name].actual_total_sales | |
# for channel_name in st.session_state["channels_list"] | |
# ] | |
# + [_scenario.correction.sum() + _scenario.constant.sum()], | |
# hole=0.3, | |
# ), | |
# row=1, | |
# col=2, | |
# ) | |
# total_contribution_fig.update_traces( | |
# textposition="inside", texttemplate="%{percent:.1%}" | |
# ) | |
# total_contribution_fig.update_layout( | |
# uniformtext_minsize=12, | |
# title="Channel contribution", | |
# uniformtext_mode="hide", | |
# ) | |
# return total_contribution_fig | |
# @st.cache_resource() | |
# def create_contribution_pie(_scenario): | |
# colors = plotly.colors.qualitative.Plotly # A diverse color palette | |
# colors_map = { | |
# col: colors[i % len(colors)] | |
# for i, col in enumerate(st.session_state["channels_list"]) | |
# } | |
# total_contribution_fig = make_subplots( | |
# rows=1, | |
# cols=2, | |
# subplot_titles=["Spends", "Revenue"], | |
# specs=[[{"type": "pie"}, {"type": "pie"}]], | |
# ) | |
# total_contribution_fig.add_trace( | |
# go.Pie( | |
# labels=[ | |
# channel_name_formating(channel_name) | |
# for channel_name in st.session_state["channels_list"] | |
# ] | |
# + ["Non Media"], | |
# values=[ | |
# round( | |
# _scenario.channels[channel_name].actual_total_spends | |
# * _scenario.channels[channel_name].conversion_rate, | |
# 1, | |
# ) | |
# for channel_name in st.session_state["channels_list"] | |
# ] | |
# + [0], | |
# marker=dict( | |
# colors=[ | |
# colors_map[channel_name] | |
# for channel_name in st.session_state["channels_list"] | |
# ] | |
# + ["#F0F0F0"] | |
# ), | |
# hole=0.3, | |
# ), | |
# row=1, | |
# col=1, | |
# ) | |
# total_contribution_fig.add_trace( | |
# go.Pie( | |
# labels=[ | |
# channel_name_formating(channel_name) | |
# for channel_name in st.session_state["channels_list"] | |
# ] | |
# + ["Non Media"], | |
# values=[ | |
# _scenario.channels[channel_name].actual_total_sales | |
# for channel_name in st.session_state["channels_list"] | |
# ] | |
# + [_scenario.correction.sum() + _scenario.constant.sum()], | |
# marker=dict( | |
# colors=[ | |
# colors_map[channel_name] | |
# for channel_name in st.session_state["channels_list"] | |
# ] | |
# + ["#F0F0F0"] | |
# ), | |
# hole=0.3, | |
# ), | |
# row=1, | |
# col=2, | |
# ) | |
# total_contribution_fig.update_traces( | |
# textposition="inside", texttemplate="%{percent:.1%}" | |
# ) | |
# total_contribution_fig.update_layout( | |
# uniformtext_minsize=12, | |
# title="Channel contribution", | |
# uniformtext_mode="hide", | |
# ) | |
# return total_contribution_fig | |
# @st.cache_resource() | |
def create_contribution_pie(_scenario, target_col): | |
colors = plotly.colors.qualitative.Plotly # A diverse color palette | |
colors_map = { | |
col: colors[i % len(colors)] | |
for i, col in enumerate(st.session_state["channels_list"]) | |
} | |
spends_values = [ | |
round( | |
_scenario.channels[channel_name].actual_total_spends | |
* _scenario.channels[channel_name].conversion_rate, | |
1, | |
) | |
for channel_name in st.session_state["channels_list"] | |
] | |
spends_values.append(0) # Adding Non Media value | |
revenue_values = [ | |
_scenario.channels[channel_name].actual_total_sales | |
for channel_name in st.session_state["channels_list"] | |
] | |
revenue_values.append( | |
_scenario.correction.sum() + _scenario.constant.sum() | |
) # Adding Non Media value | |
total_contribution_fig = make_subplots( | |
rows=1, | |
cols=2, | |
subplot_titles=["Spend", target_col], | |
specs=[[{"type": "pie"}, {"type": "pie"}]], | |
) | |
total_contribution_fig.add_trace( | |
go.Pie( | |
labels=[ | |
channel_name_formating(channel_name) | |
for channel_name in st.session_state["channels_list"] | |
] | |
+ ["Non Media"], | |
values=spends_values, | |
marker=dict( | |
colors=[ | |
colors_map[channel_name] | |
for channel_name in st.session_state["channels_list"] | |
] | |
+ ["#F0F0F0"] | |
), | |
hole=0.3, | |
), | |
row=1, | |
col=1, | |
) | |
total_contribution_fig.add_trace( | |
go.Pie( | |
labels=[ | |
channel_name_formating(channel_name) | |
for channel_name in st.session_state["channels_list"] | |
] | |
+ ["Non Media"], | |
values=revenue_values, | |
marker=dict( | |
colors=[ | |
colors_map[channel_name] | |
for channel_name in st.session_state["channels_list"] | |
] | |
+ ["#F0F0F0"] | |
), | |
hole=0.3, | |
), | |
row=1, | |
col=2, | |
) | |
total_contribution_fig.update_traces( | |
textposition="inside", texttemplate="%{percent:.1%}" | |
) | |
total_contribution_fig.update_layout( | |
uniformtext_minsize=12, | |
title="Channel contribution", | |
uniformtext_mode="hide", | |
) | |
return total_contribution_fig | |
# def create_contribuion_stacked_plot(scenario): | |
# weekly_contribution_fig = make_subplots(rows=1, cols=2,subplot_titles=['Spends','Revenue'],specs=[[{"type": "bar"}, {"type": "bar"}]]) | |
# raw_df = st.session_state['raw_df'] | |
# df = raw_df.sort_values(by='Date') | |
# x = df.Date | |
# weekly_spends_data = [] | |
# weekly_sales_data = [] | |
# for channel_name in st.session_state['channels_list']: | |
# weekly_spends_data.append((go.Bar(x=x, | |
# y=scenario.channels[channel_name].actual_spends * scenario.channels[channel_name].conversion_rate, | |
# name=channel_name_formating(channel_name), | |
# hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}", | |
# legendgroup=channel_name))) | |
# weekly_sales_data.append((go.Bar(x=x, | |
# y=scenario.channels[channel_name].actual_sales, | |
# name=channel_name_formating(channel_name), | |
# hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}", | |
# legendgroup=channel_name, showlegend=False))) | |
# for _d in weekly_spends_data: | |
# weekly_contribution_fig.add_trace(_d, row=1, col=1) | |
# for _d in weekly_sales_data: | |
# weekly_contribution_fig.add_trace(_d, row=1, col=2) | |
# weekly_contribution_fig.add_trace(go.Bar(x=x, | |
# y=scenario.constant + scenario.correction, | |
# name='Non Media', | |
# hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), row=1, col=2) | |
# weekly_contribution_fig.update_layout(barmode='stack', title='Channel contribuion by week', xaxis_title='Date') | |
# weekly_contribution_fig.update_xaxes(showgrid=False) | |
# weekly_contribution_fig.update_yaxes(showgrid=False) | |
# return weekly_contribution_fig | |
# @st.cache_resource() | |
# def create_channel_spends_sales_plot(channel): | |
# if channel is not None: | |
# x = channel.dates | |
# _spends = channel.actual_spends * channel.conversion_rate | |
# _sales = channel.actual_sales | |
# channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]]) | |
# channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), secondary_y = False) | |
# channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#005b96'),name='Spends',hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}"), secondary_y = True) | |
# channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise') | |
# channel_sales_spends_fig.update_xaxes(showgrid=False) | |
# channel_sales_spends_fig.update_yaxes(showgrid=False) | |
# else: | |
# raw_df = st.session_state['raw_df'] | |
# df = raw_df.sort_values(by='Date') | |
# x = df.Date | |
# scenario = class_from_dict(st.session_state['default_scenario_dict']) | |
# _sales = scenario.constant + scenario.correction | |
# channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]]) | |
# channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), secondary_y = False) | |
# # channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#15C39A'),name='Spends',hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}"), secondary_y = True) | |
# channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise') | |
# channel_sales_spends_fig.update_xaxes(showgrid=False) | |
# channel_sales_spends_fig.update_yaxes(showgrid=False) | |
# return channel_sales_spends_fig | |
# Define a shared color palette | |
# def create_contribution_pie(): | |
# color_palette = ['#F3F3F0', '#5E7D7E', '#2FA1FF', '#00EDED', '#00EAE4', '#304550', '#EDEBEB', '#7FBEFD', '#003059', '#A2F3F3', '#E1D6E2', '#B6B6B6'] | |
# total_contribution_fig = make_subplots(rows=1, cols=2, subplot_titles=['Spends', 'Revenue'], specs=[[{"type": "pie"}, {"type": "pie"}]]) | |
# | |
# channels_list = ['Paid Search', 'Ga will cid baixo risco', 'Digital tactic others', 'Fb la tier 1', 'Fb la tier 2', 'Paid social others', 'Programmatic', 'Kwai', 'Indicacao', 'Infleux', 'Influencer', 'Non Media'] | |
# | |
# # Assign colors from the limited palette to channels | |
# colors_map = {col: color_palette[i % len(color_palette)] for i, col in enumerate(channels_list)} | |
# colors_map['Non Media'] = color_palette[5] # Assign fixed green color for 'Non Media' | |
# | |
# # Hardcoded values for Spends and Revenue | |
# spends_values = [0.5, 3.36, 1.1, 2.7, 2.7, 2.27, 70.6, 1, 1, 13.7, 1, 0] | |
# revenue_values = [1, 4, 5, 3, 3, 2, 50.8, 1.5, 0.7, 13, 0, 16] | |
# | |
# # Add trace for Spends pie chart | |
# total_contribution_fig.add_trace( | |
# go.Pie( | |
# labels=[channel_name for channel_name in channels_list], | |
# values=spends_values, | |
# marker=dict(colors=[colors_map[channel_name] for channel_name in channels_list]), | |
# hole=0.3 | |
# ), | |
# row=1, col=1 | |
# ) | |
# | |
# # Add trace for Revenue pie chart | |
# total_contribution_fig.add_trace( | |
# go.Pie( | |
# labels=[channel_name for channel_name in channels_list], | |
# values=revenue_values, | |
# marker=dict(colors=[colors_map[channel_name] for channel_name in channels_list]), | |
# hole=0.3 | |
# ), | |
# row=1, col=2 | |
# ) | |
# | |
# total_contribution_fig.update_traces(textposition='inside', texttemplate='%{percent:.1%}') | |
# total_contribution_fig.update_layout(uniformtext_minsize=12, title='Channel contribution', uniformtext_mode='hide') | |
# return total_contribution_fig | |
# @st.cache_resource() | |
# def create_contribuion_stacked_plot(_scenario): | |
# weekly_contribution_fig = make_subplots( | |
# rows=1, | |
# cols=2, | |
# subplot_titles=["Spends", "Revenue"], | |
# specs=[[{"type": "bar"}, {"type": "bar"}]], | |
# ) | |
# raw_df = st.session_state["raw_df"] | |
# df = raw_df.sort_values(by="Date") | |
# x = df.Date | |
# weekly_spends_data = [] | |
# weekly_sales_data = [] | |
# for i, channel_name in enumerate(st.session_state["channels_list"]): | |
# color = color_palette[i % len(color_palette)] | |
# weekly_spends_data.append( | |
# go.Bar( | |
# x=x, | |
# y=_scenario.channels[channel_name].actual_spends | |
# * _scenario.channels[channel_name].conversion_rate, | |
# name=channel_name_formating(channel_name), | |
# hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}", | |
# legendgroup=channel_name, | |
# marker_color=color, | |
# ) | |
# ) | |
# weekly_sales_data.append( | |
# go.Bar( | |
# x=x, | |
# y=_scenario.channels[channel_name].actual_sales, | |
# name=channel_name_formating(channel_name), | |
# hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}", | |
# legendgroup=channel_name, | |
# showlegend=False, | |
# marker_color=color, | |
# ) | |
# ) | |
# for _d in weekly_spends_data: | |
# weekly_contribution_fig.add_trace(_d, row=1, col=1) | |
# for _d in weekly_sales_data: | |
# weekly_contribution_fig.add_trace(_d, row=1, col=2) | |
# weekly_contribution_fig.add_trace( | |
# go.Bar( | |
# x=x, | |
# y=_scenario.constant + _scenario.correction, | |
# name="Non Media", | |
# hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}", | |
# marker_color=color_palette[-1], | |
# ), | |
# row=1, | |
# col=2, | |
# ) | |
# weekly_contribution_fig.update_layout( | |
# barmode="stack", | |
# title="Channel contribution by week", | |
# xaxis_title="Date", | |
# ) | |
# weekly_contribution_fig.update_xaxes(showgrid=False) | |
# weekly_contribution_fig.update_yaxes(showgrid=False) | |
# return weekly_contribution_fig | |
# @st.cache_resource() | |
def create_contribuion_stacked_plot(_scenario, target_col): | |
color_palette = plotly.colors.qualitative.Plotly # A diverse color palette | |
weekly_contribution_fig = make_subplots( | |
rows=1, | |
cols=2, | |
subplot_titles=["Spend", target_col], | |
specs=[[{"type": "bar"}, {"type": "bar"}]], | |
) | |
raw_df = st.session_state["raw_df"] | |
df = raw_df.sort_values(by="Date") | |
x = df.Date | |
weekly_spends_data = [] | |
weekly_sales_data = [] | |
for i, channel_name in enumerate(st.session_state["channels_list"]): | |
color = color_palette[i % len(color_palette)] | |
weekly_spends_data.append( | |
go.Bar( | |
x=x, | |
y=_scenario.channels[channel_name].actual_spends | |
* _scenario.channels[channel_name].conversion_rate, | |
name=channel_name_formating(channel_name), | |
hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}", | |
legendgroup=channel_name, | |
marker_color=color, | |
) | |
) | |
weekly_sales_data.append( | |
go.Bar( | |
x=x, | |
y=_scenario.channels[channel_name].actual_sales, | |
name=channel_name_formating(channel_name), | |
hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}", | |
legendgroup=channel_name, | |
showlegend=False, | |
marker_color=color, | |
) | |
) | |
for _d in weekly_spends_data: | |
weekly_contribution_fig.add_trace(_d, row=1, col=1) | |
for _d in weekly_sales_data: | |
weekly_contribution_fig.add_trace(_d, row=1, col=2) | |
weekly_contribution_fig.add_trace( | |
go.Bar( | |
x=x, | |
y=_scenario.constant + _scenario.correction, | |
name="Non Media", | |
hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}", | |
marker_color=color_palette[-1], | |
), | |
row=1, | |
col=2, | |
) | |
weekly_contribution_fig.update_layout( | |
barmode="stack", | |
title="Channel contribution by week", | |
xaxis_title="Date", | |
) | |
weekly_contribution_fig.update_xaxes(showgrid=False) | |
weekly_contribution_fig.update_yaxes(showgrid=False) | |
return weekly_contribution_fig | |
def create_channel_spends_sales_plot(channel, target_col): | |
if channel is not None: | |
x = channel.dates | |
_spends = channel.actual_spends * channel.conversion_rate | |
_sales = channel.actual_sales | |
channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]]) | |
channel_sales_spends_fig.add_trace( | |
go.Bar( | |
x=x, | |
y=_sales, | |
marker_color=color_palette[ | |
3 | |
], # You can choose a color from the palette | |
name=target_col, | |
hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}", | |
), | |
secondary_y=False, | |
) | |
channel_sales_spends_fig.add_trace( | |
go.Scatter( | |
x=x, | |
y=_spends, | |
line=dict( | |
color=color_palette[2] | |
), # You can choose another color from the palette | |
name="Spends", | |
hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}", | |
), | |
secondary_y=True, | |
) | |
channel_sales_spends_fig.update_layout( | |
xaxis_title="Date", | |
yaxis_title=target_col, | |
yaxis2_title="Spend ($)", | |
title="Weekly Channel Spends and " + target_col, | |
) | |
channel_sales_spends_fig.update_xaxes(showgrid=False) | |
channel_sales_spends_fig.update_yaxes(showgrid=False) | |
else: | |
raw_df = st.session_state["raw_df"] | |
df = raw_df.sort_values(by="Date") | |
x = df.Date | |
scenario = class_from_dict(st.session_state["default_scenario_dict"]) | |
_sales = scenario.constant + scenario.correction | |
channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]]) | |
channel_sales_spends_fig.add_trace( | |
go.Bar( | |
x=x, | |
y=_sales, | |
marker_color=color_palette[ | |
0 | |
], # You can choose a color from the palette | |
name="Revenue", | |
hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}", | |
), | |
secondary_y=False, | |
) | |
channel_sales_spends_fig.update_layout( | |
xaxis_title="Date", | |
yaxis_title="Revenue", | |
yaxis2_title="Spend ($)", | |
title="Channel spends and Revenue week-wise", | |
) | |
channel_sales_spends_fig.update_xaxes(showgrid=False) | |
channel_sales_spends_fig.update_yaxes(showgrid=False) | |
return channel_sales_spends_fig | |
def format_numbers(value, n_decimals=1, include_indicator=True): | |
if include_indicator: | |
return f"{CURRENCY_INDICATOR} {numerize(value,n_decimals)}" | |
else: | |
return f"{numerize(value,n_decimals)}" | |
def decimal_formater(num_string, n_decimals=1): | |
parts = num_string.split(".") | |
if len(parts) == 1: | |
return num_string + "." + "0" * n_decimals | |
else: | |
to_be_padded = n_decimals - len(parts[-1]) | |
if to_be_padded > 0: | |
return num_string + "0" * to_be_padded | |
else: | |
return num_string | |
def channel_name_formating(channel_name): | |
name_mod = channel_name.replace("_", " ") | |
if name_mod.lower().endswith(" imp"): | |
name_mod = name_mod.replace("Imp", "Spend") | |
elif name_mod.lower().endswith(" clicks"): | |
name_mod = name_mod.replace("Clicks", "Spend") | |
return name_mod | |
def send_email(email, message): | |
s = smtplib.SMTP("smtp.gmail.com", 587) | |
s.starttls() | |
s.login("geethu4444@gmail.com", "jgydhpfusuremcol") | |
s.sendmail("geethu4444@gmail.com", email, message) | |
s.quit() | |
# if __name__ == "__main__": | |
# initialize_data() | |