from scenario import numerize
import streamlit as st
import pandas as pd
import json
from scenario import Channel, Scenario
import numpy as np
from plotly.subplots import make_subplots
import plotly.graph_objects as go
from scenario import class_to_dict
from collections import OrderedDict
import io
import plotly
from pathlib import Path
import pickle
import yaml
from yaml import SafeLoader
from streamlit.components.v1 import html
import smtplib
from scipy.optimize import curve_fit
from sklearn.metrics import r2_score
from scenario import class_from_dict
from utilities import retrieve_pkl_object
import os
import base64
# # schema = db_cred["schema"]
color_palette = [
"#F3F3F0",
"#5E7D7E",
"#2FA1FF",
"#00EDED",
"#00EAE4",
"#304550",
"#EDEBEB",
"#7FBEFD",
"#003059",
"#A2F3F3",
"#E1D6E2",
"#B6B6B6",
]
CURRENCY_INDICATOR = "$"
if "project_dct" not in st.session_state or "project_number" not in st.session_state:
st.error(
"No tuned model available. Please build and tune a model to generate response curves."
)
st.stop()
tuned_model = retrieve_pkl_object(
st.session_state["project_number"], "Model_Tuning", "tuned_model"
)
if tuned_model is None:
st.error(
"No tuned model available. Please build and tune a model to generate response curves."
)
st.stop()
def load_authenticator():
with open("config.yaml") as file:
config = yaml.load(file, Loader=SafeLoader)
st.session_state["config"] = config
authenticator = stauth.Authenticate(
config["credentials"],
config["cookie"]["name"],
config["cookie"]["key"],
config["cookie"]["expiry_days"],
config["preauthorized"],
)
st.session_state["authenticator"] = authenticator
return authenticator
def nav_page(page_name, timeout_secs=3):
nav_script = """
""" % (
page_name,
timeout_secs,
)
html(nav_script)
# def load_local_css(file_name):
# with open(file_name) as f:
# st.markdown(f'', unsafe_allow_html=True)
# def set_header():
# return st.markdown(f"""
#
MMM LiME
#
.svg )
#
""", unsafe_allow_html=True)
path = os.path.dirname(__file__)
file_ = open(f"{path}/logo.png", "rb")
contents = file_.read()
data_url = base64.b64encode(contents).decode("utf-8")
file_.close()
DATA_PATH = "./data"
IMAGES_PATH = "./data/images_224_224"
# is_panel = True if len(panel_col) > 0 else False
# manoj
is_panel = False
date_col = "Date"
# is_panel = False # flag if set to true - do panel level response curves
def load_local_css(file_name):
with open(file_name) as f:
st.markdown(f"", unsafe_allow_html=True)
# def set_header():
# return st.markdown(f"""
#
H & M Recommendations
#

#
""", unsafe_allow_html=True)
path1 = os.path.dirname(__file__)
# file_1 = open(f"{path}/willbank.png", "rb")
# contents1 = file_1.read()
# data_url1 = base64.b64encode(contents1).decode("utf-8")
# file_1.close()
DATA_PATH1 = "./data"
IMAGES_PATH1 = "./data/images_224_224"
def set_header():
return st.markdown(
f"""""",
unsafe_allow_html=True,
)
# def set_header():
# logo_path = "./path/to/your/local/LIME_logo.png" # Replace with the actual file path
# text = "LiME"
# return st.markdown(f"""
#

#
{text}
#
""", unsafe_allow_html=True)
def s_curve(x, K, b, a, x0):
return K / (1 + b * np.exp(-a * (x - x0)))
def overview_test_data_prep_panel(X, df, spends_X, date_col, panel_col, target_col):
"""
function to create the data which is used in initialize data fn
X : X test with contributions
df : originally uploaded data (media data) which has raw vars
spends_X : spends of dates in X test
"""
channels = st.session_state["channels"]
channel_list = channels.keys()
# map transformed variable to raw variable name & channel name
# mapping eg : paid_search_clicks_lag_2 (transformed var) --> paid_search_clicks (raw var) --> paid_search (channel)
variables = {}
channel_and_variables = {}
new_variables = {}
new_channels_and_variables = {}
for transformed_var in [
col
for col in X.drop(columns=[date_col, panel_col, target_col, "pred"]).columns
if "_contr" not in col
]:
if len([col for col in df.columns if col in transformed_var]) == 1:
raw_var = [col for col in df.columns if col in transformed_var][0]
variables[transformed_var] = raw_var
# Check if the list comprehension result is not empty before accessing the first element
channels_list = [
channel for channel, raw_vars in channels.items() if raw_var in raw_vars
]
if channels_list:
channel_and_variables[raw_var] = channels_list[0]
else:
# Handle the case where channels_list is empty
# You might want to set a default value or handle it according to your use case
channel_and_variables[raw_var] = None
else:
new_variables[transformed_var] = transformed_var
new_channels_and_variables[transformed_var] = "base"
# Raw DF
raw_X = pd.merge(
X[[date_col, panel_col]],
df[[date_col, panel_col] + list(variables.values())],
how="left",
on=[date_col, panel_col],
)
assert len(raw_X) == len(X)
raw_X_cols = []
for i in raw_X.columns:
if i in channel_and_variables.keys():
raw_X_cols.append(channel_and_variables[i])
else:
raw_X_cols.append(i)
raw_X.columns = raw_X_cols
# Contribution DF
contr_X = X[
[date_col, panel_col]
+ [col for col in X.columns if "_contr" in col and "sum_" not in col]
].copy()
# if "base_contr" in contr_X.columns:
# contr_X.rename(columns={'base_contr':'const_contr'},inplace=True)
# # new_variables = [
# col
# for col in contr_X.columns
# if "_flag" in col.lower() or "trend" in col.lower() or "sine" in col.lower()
# ]
# if len(new_variables) > 0:
# contr_X["const"] = contr_X[["panel_effect"] + new_variables].sum(axis=1)
# contr_X.drop(columns=["panel_effect"], inplace=True)
# contr_X.drop(columns=new_variables, inplace=True)
# else:
# contr_X.rename(columns={"panel_effect": "const"}, inplace=True)
new_contr_X_cols = []
for col in contr_X.columns:
col_clean = col.replace("_contr", "")
new_contr_X_cols.append(col_clean)
contr_X.columns = new_contr_X_cols
contr_X_cols = []
for i in contr_X.columns:
if i in variables.keys():
contr_X_cols.append(channel_and_variables[variables[i]])
else:
contr_X_cols.append(i)
contr_X.columns = contr_X_cols
# Spends DF
spends_X.columns = [col.replace("_cost", "") for col in spends_X.columns]
raw_X.rename(columns={"date": "Date"}, inplace=True)
contr_X.rename(columns={"date": "Date"}, inplace=True)
spends_X.rename(columns={"date": "Week"}, inplace=True)
spends_X.columns = [
col.replace("spends_", "") if col.startswith("spends_") else col
for col in spends_X.columns
]
# Rename column to 'Date'
spends_X.rename(columns={"Week": "Date"}, inplace=True)
# Remove "response_metric_" from the start and "_total" from the end
if str(target_col).startswith("response_metric_"):
target_col = target_col.replace("response_metric_", "", 1)
# Remove the last 6 characters (length of "_total")
if str(target_col).endswith("_total"):
target_col = target_col[:-6]
# Rename column to 'Date'
spends_X.rename(columns={"Week": "Date"}, inplace=True)
# Save raw, spends and contribution data
st.session_state["project_dct"]["current_media_performance"]["model_outputs"][
target_col
] = {
"raw_data": raw_X,
"contribution_data": contr_X,
"spends_data": spends_X,
}
# Clear page metadata
st.session_state["project_dct"]["scenario_planner"]["original_metadata_file"] = None
st.session_state["project_dct"]["response_curves"]["original_metadata_file"] = None
# st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"] = None
# st.session_state["project_dct"]["response_curves"]["modified_metadata_file"] = None
def overview_test_data_prep_nonpanel(X, df, spends_X, date_col, target_col):
"""
function to create the data which is used in initialize data fn
"""
# with open(
# os.path.join(st.session_state["project_path"], "channel_groups.pkl"), "rb"
# ) as f:
# channels = pickle.load(f)
# channel_list = list(channels.keys())
channels = st.session_state["channels"]
channel_list = channels.keys()
# map transformed variable to raw variable name & channel name
# mapping eg : paid_search_clicks_lag_2 (transformed var) --> paid_search_clicks (raw var) --> paid_search (channel)
variables = {}
channel_and_variables = {}
new_variables = {}
new_channels_and_variables = {}
cols_to_del = list(
set([date_col, target_col, "pred"]).intersection((set(X.columns)))
)
# remove exog cols from RAW data (exog cols are part of base, raw data needs media vars only)
all_exog_vars = st.session_state["bin_dict"]["Exogenous"]
all_exog_vars = [
var.lower()
.replace(".", "_")
.replace("@", "_")
.replace(" ", "_")
.replace("-", "")
.replace(":", "")
.replace("__", "_")
for var in all_exog_vars
]
exog_cols = []
if len(all_exog_vars) > 0:
for col in X.columns:
if len([exog_var for exog_var in all_exog_vars if exog_var in col]) > 0:
exog_cols.append(col)
cols_to_del = cols_to_del + exog_cols
for transformed_var in [
col for col in X.drop(columns=cols_to_del).columns if "_contr" not in col
]: # also has 'const'
if (
len([col for col in df.columns if col in transformed_var]) == 1
): # col is raw var
raw_var = [col for col in df.columns if col in transformed_var][0]
variables[transformed_var] = raw_var
channel_and_variables[raw_var] = [
channel for channel, raw_vars in channels.items() if raw_var in raw_vars
][0]
else: # when no corresponding raw var then base
new_variables[transformed_var] = transformed_var
new_channels_and_variables[transformed_var] = "base"
# Raw DF
raw_X = pd.merge(
X[[date_col]],
df[[date_col] + list(variables.values())],
how="left",
on=[date_col],
)
assert len(raw_X) == len(X)
raw_X_cols = []
for i in raw_X.columns:
if i in channel_and_variables.keys():
raw_X_cols.append(channel_and_variables[i])
else:
raw_X_cols.append(i)
raw_X.columns = raw_X_cols
# Contribution DF
contr_X = X[
[date_col] + [col for col in X.columns if "_contr" in col and "sum_" not in col]
].copy()
new_variables = [
col
for col in contr_X.columns
if "_flag" in col.lower() or "trend" in col.lower() or "sine" in col.lower()
]
if (
len(new_variables) > 0
): # if new vars are available, their contributions should be added to base (called const)
contr_X["const_contr"] = contr_X[["const_contr"] + new_variables].sum(axis=1)
contr_X.drop(columns=new_variables, inplace=True)
new_contr_X_cols = []
for col in contr_X.columns:
col_clean = col.replace("_contr", "")
new_contr_X_cols.append(col_clean)
contr_X.columns = new_contr_X_cols
contr_X_cols = []
for i in contr_X.columns:
if i in variables.keys():
contr_X_cols.append(channel_and_variables[variables[i]])
else:
contr_X_cols.append(i)
contr_X.columns = contr_X_cols
# Spends DF
# spends_X.columns = [
# col.replace("_cost", "").replace("_spends", "").replace("_spend", "")
# for col in spends_X.columns
# ]
spends_X_col_map = {
col: bucket
for col in spends_X.columns
for bucket in channels.keys()
if col in channels[bucket]
}
spends_X.rename(columns=spends_X_col_map, inplace=True)
raw_X.rename(columns={"date": "Date"}, inplace=True)
contr_X.rename(columns={"date": "Date"}, inplace=True)
spends_X.rename(columns={"date": "Week"}, inplace=True)
spends_X.columns = [
col.replace("spends_", "") if col.startswith("spends_") else col
for col in spends_X.columns
]
# Rename column to 'Date'
spends_X.rename(columns={"Week": "Date"}, inplace=True)
# Remove "response_metric_" from the start and "_total" from the end
if str(target_col).startswith("response_metric_"):
target_col = target_col.replace("response_metric_", "", 1)
# Remove the last 6 characters (length of "_total")
if str(target_col).endswith("_total"):
target_col = target_col[:-6]
# Rename column to 'Date'
spends_X.rename(columns={"Week": "Date"}, inplace=True)
# Save raw, spends and contribution data
st.session_state["project_dct"]["current_media_performance"]["model_outputs"][
target_col
] = {
"raw_data": raw_X,
"contribution_data": contr_X,
"spends_data": spends_X,
}
# Clear page metadata
st.session_state["project_dct"]["scenario_planner"]["original_metadata_file"] = None
st.session_state["project_dct"]["response_curves"]["original_metadata_file"] = None
# st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"] = None
# st.session_state["project_dct"]["response_curves"]["modified_metadata_file"] = None
def initialize_data_cmp(target_col, is_panel, panel_col, start_date, end_date):
start_date = pd.to_datetime(start_date)
end_date = pd.to_datetime(end_date)
# Remove "response_metric_" from the start and "_total" from the end
if str(target_col).startswith("response_metric_"):
target_col = target_col.replace("response_metric_", "", 1)
# Remove the last 6 characters (length of "_total")
if str(target_col).endswith("_total"):
target_col = target_col[:-6]
# Extract dataframes for raw data, spend input, and contribution data
raw_df = st.session_state["project_dct"]["current_media_performance"][
"model_outputs"
][target_col]["raw_data"]
spend_df = st.session_state["project_dct"]["current_media_performance"][
"model_outputs"
][target_col]["spends_data"]
contri_df = st.session_state["project_dct"]["current_media_performance"][
"model_outputs"
][target_col]["contribution_data"]
# Remove unnecessary columns
unnamed_cols = [col for col in raw_df.columns if col.lower().startswith("unnamed")]
exclude_columns = ["Date"] + unnamed_cols
if is_panel:
exclude_columns = exclude_columns + [panel_col]
# Aggregate all 3 dfs to date level (from date-panel level)
raw_df[date_col] = pd.to_datetime(raw_df[date_col])
raw_df = raw_df[raw_df[date_col] >= start_date]
raw_df = raw_df[raw_df[date_col] <= end_date].reset_index(drop=True)
raw_df_aggregations = {c: "sum" for c in raw_df.columns if c not in exclude_columns}
raw_df = raw_df.groupby(date_col).agg(raw_df_aggregations).reset_index()
contri_df[date_col] = pd.to_datetime(contri_df[date_col])
contri_df = contri_df[contri_df[date_col] >= start_date]
contri_df = contri_df[contri_df[date_col] <= end_date].reset_index(drop=True)
contri_df_aggregations = {
c: "sum" for c in contri_df.columns if c not in exclude_columns
}
contri_df = contri_df.groupby(date_col).agg(contri_df_aggregations).reset_index()
input_df = raw_df.sort_values(by=[date_col])
output_df = contri_df.sort_values(by=[date_col])
spend_df["Date"] = pd.to_datetime(
spend_df["Date"], format="%Y-%m-%d", errors="coerce"
)
spend_df = spend_df[spend_df["Date"] >= start_date]
spend_df = spend_df[spend_df["Date"] <= end_date].reset_index(drop=True)
spend_df_aggregations = {
c: "sum" for c in spend_df.columns if c not in exclude_columns
}
spend_df = spend_df.groupby("Date").agg(spend_df_aggregations).reset_index()
# spend_df['Week'] = pd.to_datetime(spend_df['Week'], errors='coerce')
# spend_df = spend_df.sort_values(by='Week')
channel_list = [col for col in input_df.columns if col not in exclude_columns]
response_curves = {}
mapes = {}
rmses = {}
upper_limits = {}
powers = {}
r2 = {}
conv_rates = {}
output_cols = []
channels = {}
sales = None
dates = input_df.Date.values
actual_output_dic = {}
actual_input_dic = {}
# channel_list=['programmatic']
infeasible_channels = [
c
for c in contri_df.select_dtypes(include=["float", "int"]).columns
if contri_df[c].sum() <= 0
]
channel_list = list(set(channel_list) - set(infeasible_channels))
for inp_col in channel_list:
spends = input_df[inp_col].values
x = spends.copy()
# upper limit for penalty
upper_limits[inp_col] = 2 * x.max()
out_col = inp_col
y = output_df[out_col].values.copy()
actual_output_dic[inp_col] = y.copy()
actual_input_dic[inp_col] = x.copy()
##output cols aggregation
output_cols.append(out_col)
## scale the input
power = np.ceil(np.log(x.max()) / np.log(10)) - 3
if power >= 0:
x = x / 10**power
x = x.astype("float64")
y = y.astype("float64")
if y.max() <= 0.01:
bounds = (
(0, 0, 0, 0),
(3 * 0.01, 1000, 1, x.max() if x.max() > 0 else 0.01),
)
else:
bounds = ((0, 0, 0, 0), (3 * y.max(), 1000, 1, x.max()))
params, _ = curve_fit(
s_curve,
x,
y,
p0=(2 * y.max(), 0.01, 1e-5, x.max()),
bounds=bounds,
maxfev=int(1e5),
)
mape = (100 * abs(1 - s_curve(x, *params) / y.clip(min=1))).mean()
rmse = np.sqrt(((y - s_curve(x, *params)) ** 2).mean())
r2_ = r2_score(y, s_curve(x, *params))
response_curves[inp_col] = {
"K": params[0],
"b": params[1],
"a": params[2],
"x0": params[3],
}
mapes[inp_col] = mape
rmses[inp_col] = rmse
r2[inp_col] = r2_
powers[inp_col] = power
conv = spend_df[inp_col].sum() / max(input_df[inp_col].sum(), 1e-9)
conv_rates[inp_col] = conv
channel = Channel(
name=inp_col,
dates=dates,
spends=spends,
# conversion_rate = np.mean(list(conv_rates[inp_col].values())),
conversion_rate=conv_rates[inp_col],
response_curve_type="s-curve",
response_curve_params={
"K": params[0],
"b": params[1],
"a": params[2],
"x0": params[3],
},
bounds=np.array([-10, 10]),
correction=y - s_curve(x, *params),
)
channels[inp_col] = channel
if sales is None:
sales = channel.actual_sales
else:
sales += channel.actual_sales
other_contributions = (
output_df.drop([*output_cols], axis=1).sum(axis=1, numeric_only=True).values
)
correction = output_df.drop(["Date"], axis=1).sum(axis=1).values - (
sales + other_contributions
)
# Testing
# scenario_test_df = pd.DataFrame(
# columns=["other_contributions", "correction", "sales"]
# )
# scenario_test_df["other_contributions"] = other_contributions
# scenario_test_df["correction"] = correction
# scenario_test_df["sales"] = sales
# scenario_test_df.to_csv("test\scenario_test_df.csv", index=False)
# output_df.to_csv("test\output_df.csv", index=False)
scenario = Scenario(
name="default",
channels=channels,
constant=other_contributions,
correction=correction,
)
## setting session variables
st.session_state["initialized"] = True
st.session_state["actual_df"] = input_df
st.session_state["raw_df"] = raw_df
st.session_state["contri_df"] = output_df
default_scenario_dict = class_to_dict(scenario)
st.session_state["default_scenario_dict"] = default_scenario_dict
st.session_state["scenario"] = scenario
st.session_state["channels_list"] = channel_list
st.session_state["optimization_channels"] = {
channel_name: False for channel_name in channel_list
}
st.session_state["rcs"] = response_curves
# orig_rcs_path = os.path.join(
# st.session_state["project_path"], f"orig_rcs_{target_col}_{panel_col}.json"
# )
# if Path(orig_rcs_path).exists():
# with open(orig_rcs_path, "r") as f:
# st.session_state["orig_rcs"] = json.load(f)
# else:
# st.session_state["orig_rcs"] = response_curves.copy()
# with open(orig_rcs_path, "w") as f:
# json.dump(st.session_state["orig_rcs"], f)
st.session_state["powers"] = powers
st.session_state["actual_contribution_df"] = pd.DataFrame(actual_output_dic)
st.session_state["actual_input_df"] = pd.DataFrame(actual_input_dic)
for channel in channels.values():
st.session_state[channel.name] = numerize(
channel.actual_total_spends * channel.conversion_rate, 1
)
# st.session_state["xlsx_buffer"] = io.BytesIO()
#
# if Path("../saved_scenarios.pkl").exists():
# with open("../saved_scenarios.pkl", "rb") as f:
# st.session_state["saved_scenarios"] = pickle.load(f)
# else:
# st.session_state["saved_scenarios"] = OrderedDict()
#
# st.session_state["total_spends_change"] = 0
# st.session_state["optimization_channels"] = {
# channel_name: False for channel_name in channel_list
# }
# st.session_state["disable_download_button"] = True
# def initialize_data():
# # fetch data from excel
# output = pd.read_excel('data.xlsx',sheet_name=None)
# raw_df = output['RAW DATA MMM']
# contribution_df = output['CONTRIBUTION MMM']
# Revenue_df = output['Revenue']
# ## channels to be shows
# channel_list = []
# for col in raw_df.columns:
# if 'click' in col.lower() or 'spend' in col.lower() or 'imp' in col.lower():
#
# channel_list.append(col)
# else:
# pass
# ## NOTE : Considered only Desktop spends for all calculations
# acutal_df = raw_df[raw_df.Region == 'Desktop'].copy()
# ## NOTE : Considered one year of data
# acutal_df = acutal_df[acutal_df.Date>'2020-12-31']
# actual_df = acutal_df.drop('Region',axis=1).sort_values(by='Date')[[*channel_list,'Date']]
# ##load response curves
# with open('./grammarly_response_curves.json','r') as f:
# response_curves = json.load(f)
# ## create channel dict for scenario creation
# dates = actual_df.Date.values
# channels = {}
# rcs = {}
# constant = 0.
# for i,info_dict in enumerate(response_curves):
# name = info_dict.get('name')
# response_curve_type = info_dict.get('response_curve')
# response_curve_params = info_dict.get('params')
# rcs[name] = response_curve_params
# if name != 'constant':
# spends = actual_df[name].values
# channel = Channel(name=name,dates=dates,
# spends=spends,
# response_curve_type=response_curve_type,
# response_curve_params=response_curve_params,
# bounds=np.array([-30,30]))
# channels[name] = channel
# else:
# constant = info_dict.get('value',0.) * len(dates)
# ## create scenario
# scenario = Scenario(name='default', channels=channels, constant=constant)
# default_scenario_dict = class_to_dict(scenario)
# ## setting session variables
# st.session_state['initialized'] = True
# st.session_state['actual_df'] = actual_df
# st.session_state['raw_df'] = raw_df
# st.session_state['default_scenario_dict'] = default_scenario_dict
# st.session_state['scenario'] = scenario
# st.session_state['channels_list'] = channel_list
# st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
# st.session_state['rcs'] = rcs
# for channel in channels.values():
# if channel.name not in st.session_state:
# st.session_state[channel.name] = float(channel.actual_total_spends)
# if 'xlsx_buffer' not in st.session_state:
# st.session_state['xlsx_buffer'] = io.BytesIO()
# ## for saving scenarios
# if 'saved_scenarios' not in st.session_state:
# if Path('../saved_scenarios.pkl').exists():
# with open('../saved_scenarios.pkl','rb') as f:
# st.session_state['saved_scenarios'] = pickle.load(f)
# else:
# st.session_state['saved_scenarios'] = OrderedDict()
# if 'total_spends_change' not in st.session_state:
# st.session_state['total_spends_change'] = 0
# if 'optimization_channels' not in st.session_state:
# st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
# if 'disable_download_button' not in st.session_state:
# st.session_state['disable_download_button'] = True
def create_channel_summary(scenario, target_column):
def round_off(x, round_off_decimal=0):
# round off
try:
x = float(x)
if x < 1 and x > 0:
round_off_decimal = int(np.floor(np.abs(np.log10(x)))) + max(
round_off_decimal, 1
)
x = np.round(x, round_off_decimal)
elif x < 0 and x > -1:
round_off_decimal = int(np.floor(np.abs(np.log10(np.abs(x))))) + max(
round_off_decimal, 1
)
x = -np.round(x, round_off_decimal)
else:
x = np.round(x, round_off_decimal)
return x
except:
return x
summary_columns = []
actual_spends_rows = []
actual_sales_rows = []
actual_roi_rows = []
for channel in scenario.channels.values():
name_mod = channel.name.replace("_", " ")
if name_mod.lower().endswith(" imp"):
name_mod = name_mod.replace("Imp", " Impressions")
summary_columns.append(name_mod)
actual_spends_rows.append(
format_numbers(float(channel.actual_total_spends * channel.conversion_rate))
)
actual_sales_rows.append(format_numbers((float(channel.actual_total_sales))))
roi = (channel.actual_total_sales) / (
channel.actual_total_spends * channel.conversion_rate
)
if roi < 0.0001:
roi = 0
actual_roi_rows.append(
decimal_formater(
str(round_off(roi, 2)),
n_decimals=2,
)
)
actual_summary_df = pd.DataFrame(
[
summary_columns,
actual_spends_rows,
actual_sales_rows,
actual_roi_rows,
]
).T
actual_summary_df.columns = ["Channel", "Spends", target_column, "ROI"]
actual_summary_df[target_column] = actual_summary_df[target_column].map(
lambda x: str(x)[1:]
)
return actual_summary_df
# def create_channel_summary(scenario):
#
# # Provided data
# data = {
# 'Channel': ['Paid Search', 'Ga will cid baixo risco', 'Digital tactic others', 'Fb la tier 1', 'Fb la tier 2', 'Paid social others', 'Programmatic', 'Kwai', 'Indicacao', 'Infleux', 'Influencer'],
# 'Spends': ['$ 11.3K', '$ 155.2K', '$ 50.7K', '$ 125.4K', '$ 125.2K', '$ 105K', '$ 3.3M', '$ 47.5K', '$ 55.9K', '$ 632.3K', '$ 48.3K'],
# 'Revenue': ['558.0K', '3.5M', '5.2M', '3.1M', '3.1M', '2.1M', '20.8M', '1.6M', '728.4K', '22.9M', '4.8M']
# }
#
# # Create DataFrame
# df = pd.DataFrame(data)
#
# # Convert currency strings to numeric values
# df['Spends'] = df['Spends'].replace({'\$': '', 'K': '*1e3', 'M': '*1e6'}, regex=True).map(pd.eval).astype(int)
# df['Revenue'] = df['Revenue'].replace({'\$': '', 'K': '*1e3', 'M': '*1e6'}, regex=True).map(pd.eval).astype(int)
#
# # Calculate ROI
# df['ROI'] = ((df['Revenue'] - df['Spends']) / df['Spends'])
#
# # Format columns
# format_currency = lambda x: f"${x:,.1f}"
# format_roi = lambda x: f"{x:.1f}"
#
# df['Spends'] = ['$ 11.3K', '$ 155.2K', '$ 50.7K', '$ 125.4K', '$ 125.2K', '$ 105K', '$ 3.3M', '$ 47.5K', '$ 55.9K', '$ 632.3K', '$ 48.3K']
# df['Revenue'] = ['$ 536.3K', '$ 3.4M', '$ 5M', '$ 3M', '$ 3M', '$ 2M', '$ 20M', '$ 1.5M', '$ 7.1M', '$ 22M', '$ 4.6M']
# df['ROI'] = df['ROI'].apply(format_roi)
#
# return df
# @st.cache_resource()
# def create_contribution_pie(_scenario):
# colors_map = {
# col: color
# for col, color in zip(
# st.session_state["channels_list"],
# plotly.colors.n_colors(
# plotly.colors.hex_to_rgb("#BE6468"),
# plotly.colors.hex_to_rgb("#E7B8B7"),
# 20,
# ),
# )
# }
# total_contribution_fig = make_subplots(
# rows=1,
# cols=2,
# subplot_titles=["Spends", "Revenue"],
# specs=[[{"type": "pie"}, {"type": "pie"}]],
# )
# total_contribution_fig.add_trace(
# go.Pie(
# labels=[
# channel_name_formating(channel_name)
# for channel_name in st.session_state["channels_list"]
# ]
# + ["Non Media"],
# values=[
# round(
# _scenario.channels[channel_name].actual_total_spends
# * _scenario.channels[channel_name].conversion_rate,
# 1,
# )
# for channel_name in st.session_state["channels_list"]
# ]
# + [0],
# marker=dict(
# colors=[
# plotly.colors.label_rgb(colors_map[channel_name])
# for channel_name in st.session_state["channels_list"]
# ]
# + ["#F0F0F0"]
# ),
# hole=0.3,
# ),
# row=1,
# col=1,
# )
# total_contribution_fig.add_trace(
# go.Pie(
# labels=[
# channel_name_formating(channel_name)
# for channel_name in st.session_state["channels_list"]
# ]
# + ["Non Media"],
# values=[
# _scenario.channels[channel_name].actual_total_sales
# for channel_name in st.session_state["channels_list"]
# ]
# + [_scenario.correction.sum() + _scenario.constant.sum()],
# hole=0.3,
# ),
# row=1,
# col=2,
# )
# total_contribution_fig.update_traces(
# textposition="inside", texttemplate="%{percent:.1%}"
# )
# total_contribution_fig.update_layout(
# uniformtext_minsize=12,
# title="Channel contribution",
# uniformtext_mode="hide",
# )
# return total_contribution_fig
# @st.cache_resource()
# def create_contribution_pie(_scenario):
# colors = plotly.colors.qualitative.Plotly # A diverse color palette
# colors_map = {
# col: colors[i % len(colors)]
# for i, col in enumerate(st.session_state["channels_list"])
# }
# total_contribution_fig = make_subplots(
# rows=1,
# cols=2,
# subplot_titles=["Spends", "Revenue"],
# specs=[[{"type": "pie"}, {"type": "pie"}]],
# )
# total_contribution_fig.add_trace(
# go.Pie(
# labels=[
# channel_name_formating(channel_name)
# for channel_name in st.session_state["channels_list"]
# ]
# + ["Non Media"],
# values=[
# round(
# _scenario.channels[channel_name].actual_total_spends
# * _scenario.channels[channel_name].conversion_rate,
# 1,
# )
# for channel_name in st.session_state["channels_list"]
# ]
# + [0],
# marker=dict(
# colors=[
# colors_map[channel_name]
# for channel_name in st.session_state["channels_list"]
# ]
# + ["#F0F0F0"]
# ),
# hole=0.3,
# ),
# row=1,
# col=1,
# )
# total_contribution_fig.add_trace(
# go.Pie(
# labels=[
# channel_name_formating(channel_name)
# for channel_name in st.session_state["channels_list"]
# ]
# + ["Non Media"],
# values=[
# _scenario.channels[channel_name].actual_total_sales
# for channel_name in st.session_state["channels_list"]
# ]
# + [_scenario.correction.sum() + _scenario.constant.sum()],
# marker=dict(
# colors=[
# colors_map[channel_name]
# for channel_name in st.session_state["channels_list"]
# ]
# + ["#F0F0F0"]
# ),
# hole=0.3,
# ),
# row=1,
# col=2,
# )
# total_contribution_fig.update_traces(
# textposition="inside", texttemplate="%{percent:.1%}"
# )
# total_contribution_fig.update_layout(
# uniformtext_minsize=12,
# title="Channel contribution",
# uniformtext_mode="hide",
# )
# return total_contribution_fig
# @st.cache_resource()
def create_contribution_pie(_scenario, target_col):
colors = plotly.colors.qualitative.Plotly # A diverse color palette
colors_map = {
col: colors[i % len(colors)]
for i, col in enumerate(st.session_state["channels_list"])
}
spends_values = [
round(
_scenario.channels[channel_name].actual_total_spends
* _scenario.channels[channel_name].conversion_rate,
1,
)
for channel_name in st.session_state["channels_list"]
]
spends_values.append(0) # Adding Non Media value
revenue_values = [
_scenario.channels[channel_name].actual_total_sales
for channel_name in st.session_state["channels_list"]
]
revenue_values.append(
_scenario.correction.sum() + _scenario.constant.sum()
) # Adding Non Media value
total_contribution_fig = make_subplots(
rows=1,
cols=2,
subplot_titles=["Spend", target_col],
specs=[[{"type": "pie"}, {"type": "pie"}]],
)
total_contribution_fig.add_trace(
go.Pie(
labels=[
channel_name_formating(channel_name)
for channel_name in st.session_state["channels_list"]
]
+ ["Non Media"],
values=spends_values,
marker=dict(
colors=[
colors_map[channel_name]
for channel_name in st.session_state["channels_list"]
]
+ ["#F0F0F0"]
),
hole=0.3,
),
row=1,
col=1,
)
total_contribution_fig.add_trace(
go.Pie(
labels=[
channel_name_formating(channel_name)
for channel_name in st.session_state["channels_list"]
]
+ ["Non Media"],
values=revenue_values,
marker=dict(
colors=[
colors_map[channel_name]
for channel_name in st.session_state["channels_list"]
]
+ ["#F0F0F0"]
),
hole=0.3,
),
row=1,
col=2,
)
total_contribution_fig.update_traces(
textposition="inside", texttemplate="%{percent:.1%}"
)
total_contribution_fig.update_layout(
uniformtext_minsize=12,
title="Channel contribution",
uniformtext_mode="hide",
)
return total_contribution_fig
# def create_contribuion_stacked_plot(scenario):
# weekly_contribution_fig = make_subplots(rows=1, cols=2,subplot_titles=['Spends','Revenue'],specs=[[{"type": "bar"}, {"type": "bar"}]])
# raw_df = st.session_state['raw_df']
# df = raw_df.sort_values(by='Date')
# x = df.Date
# weekly_spends_data = []
# weekly_sales_data = []
# for channel_name in st.session_state['channels_list']:
# weekly_spends_data.append((go.Bar(x=x,
# y=scenario.channels[channel_name].actual_spends * scenario.channels[channel_name].conversion_rate,
# name=channel_name_formating(channel_name),
# hovertemplate="Date:%{x}
Spend:%{y:$.2s}",
# legendgroup=channel_name)))
# weekly_sales_data.append((go.Bar(x=x,
# y=scenario.channels[channel_name].actual_sales,
# name=channel_name_formating(channel_name),
# hovertemplate="Date:%{x}
Revenue:%{y:$.2s}",
# legendgroup=channel_name, showlegend=False)))
# for _d in weekly_spends_data:
# weekly_contribution_fig.add_trace(_d, row=1, col=1)
# for _d in weekly_sales_data:
# weekly_contribution_fig.add_trace(_d, row=1, col=2)
# weekly_contribution_fig.add_trace(go.Bar(x=x,
# y=scenario.constant + scenario.correction,
# name='Non Media',
# hovertemplate="Date:%{x}
Revenue:%{y:$.2s}"), row=1, col=2)
# weekly_contribution_fig.update_layout(barmode='stack', title='Channel contribuion by week', xaxis_title='Date')
# weekly_contribution_fig.update_xaxes(showgrid=False)
# weekly_contribution_fig.update_yaxes(showgrid=False)
# return weekly_contribution_fig
# @st.cache_resource()
# def create_channel_spends_sales_plot(channel):
# if channel is not None:
# x = channel.dates
# _spends = channel.actual_spends * channel.conversion_rate
# _sales = channel.actual_sales
# channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
# channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}
Revenue:%{y:$.2s}"), secondary_y = False)
# channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#005b96'),name='Spends',hovertemplate="Date:%{x}
Spend:%{y:$.2s}"), secondary_y = True)
# channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise')
# channel_sales_spends_fig.update_xaxes(showgrid=False)
# channel_sales_spends_fig.update_yaxes(showgrid=False)
# else:
# raw_df = st.session_state['raw_df']
# df = raw_df.sort_values(by='Date')
# x = df.Date
# scenario = class_from_dict(st.session_state['default_scenario_dict'])
# _sales = scenario.constant + scenario.correction
# channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
# channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}
Revenue:%{y:$.2s}"), secondary_y = False)
# # channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#15C39A'),name='Spends',hovertemplate="Date:%{x}
Spend:%{y:$.2s}"), secondary_y = True)
# channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise')
# channel_sales_spends_fig.update_xaxes(showgrid=False)
# channel_sales_spends_fig.update_yaxes(showgrid=False)
# return channel_sales_spends_fig
# Define a shared color palette
# def create_contribution_pie():
# color_palette = ['#F3F3F0', '#5E7D7E', '#2FA1FF', '#00EDED', '#00EAE4', '#304550', '#EDEBEB', '#7FBEFD', '#003059', '#A2F3F3', '#E1D6E2', '#B6B6B6']
# total_contribution_fig = make_subplots(rows=1, cols=2, subplot_titles=['Spends', 'Revenue'], specs=[[{"type": "pie"}, {"type": "pie"}]])
#
# channels_list = ['Paid Search', 'Ga will cid baixo risco', 'Digital tactic others', 'Fb la tier 1', 'Fb la tier 2', 'Paid social others', 'Programmatic', 'Kwai', 'Indicacao', 'Infleux', 'Influencer', 'Non Media']
#
# # Assign colors from the limited palette to channels
# colors_map = {col: color_palette[i % len(color_palette)] for i, col in enumerate(channels_list)}
# colors_map['Non Media'] = color_palette[5] # Assign fixed green color for 'Non Media'
#
# # Hardcoded values for Spends and Revenue
# spends_values = [0.5, 3.36, 1.1, 2.7, 2.7, 2.27, 70.6, 1, 1, 13.7, 1, 0]
# revenue_values = [1, 4, 5, 3, 3, 2, 50.8, 1.5, 0.7, 13, 0, 16]
#
# # Add trace for Spends pie chart
# total_contribution_fig.add_trace(
# go.Pie(
# labels=[channel_name for channel_name in channels_list],
# values=spends_values,
# marker=dict(colors=[colors_map[channel_name] for channel_name in channels_list]),
# hole=0.3
# ),
# row=1, col=1
# )
#
# # Add trace for Revenue pie chart
# total_contribution_fig.add_trace(
# go.Pie(
# labels=[channel_name for channel_name in channels_list],
# values=revenue_values,
# marker=dict(colors=[colors_map[channel_name] for channel_name in channels_list]),
# hole=0.3
# ),
# row=1, col=2
# )
#
# total_contribution_fig.update_traces(textposition='inside', texttemplate='%{percent:.1%}')
# total_contribution_fig.update_layout(uniformtext_minsize=12, title='Channel contribution', uniformtext_mode='hide')
# return total_contribution_fig
# @st.cache_resource()
# def create_contribuion_stacked_plot(_scenario):
# weekly_contribution_fig = make_subplots(
# rows=1,
# cols=2,
# subplot_titles=["Spends", "Revenue"],
# specs=[[{"type": "bar"}, {"type": "bar"}]],
# )
# raw_df = st.session_state["raw_df"]
# df = raw_df.sort_values(by="Date")
# x = df.Date
# weekly_spends_data = []
# weekly_sales_data = []
# for i, channel_name in enumerate(st.session_state["channels_list"]):
# color = color_palette[i % len(color_palette)]
# weekly_spends_data.append(
# go.Bar(
# x=x,
# y=_scenario.channels[channel_name].actual_spends
# * _scenario.channels[channel_name].conversion_rate,
# name=channel_name_formating(channel_name),
# hovertemplate="Date:%{x}
Spend:%{y:$.2s}",
# legendgroup=channel_name,
# marker_color=color,
# )
# )
# weekly_sales_data.append(
# go.Bar(
# x=x,
# y=_scenario.channels[channel_name].actual_sales,
# name=channel_name_formating(channel_name),
# hovertemplate="Date:%{x}
Revenue:%{y:$.2s}",
# legendgroup=channel_name,
# showlegend=False,
# marker_color=color,
# )
# )
# for _d in weekly_spends_data:
# weekly_contribution_fig.add_trace(_d, row=1, col=1)
# for _d in weekly_sales_data:
# weekly_contribution_fig.add_trace(_d, row=1, col=2)
# weekly_contribution_fig.add_trace(
# go.Bar(
# x=x,
# y=_scenario.constant + _scenario.correction,
# name="Non Media",
# hovertemplate="Date:%{x}
Revenue:%{y:$.2s}",
# marker_color=color_palette[-1],
# ),
# row=1,
# col=2,
# )
# weekly_contribution_fig.update_layout(
# barmode="stack",
# title="Channel contribution by week",
# xaxis_title="Date",
# )
# weekly_contribution_fig.update_xaxes(showgrid=False)
# weekly_contribution_fig.update_yaxes(showgrid=False)
# return weekly_contribution_fig
# @st.cache_resource()
def create_contribuion_stacked_plot(_scenario, target_col):
color_palette = plotly.colors.qualitative.Plotly # A diverse color palette
weekly_contribution_fig = make_subplots(
rows=1,
cols=2,
subplot_titles=["Spend", target_col],
specs=[[{"type": "bar"}, {"type": "bar"}]],
)
raw_df = st.session_state["raw_df"]
df = raw_df.sort_values(by="Date")
x = df.Date
weekly_spends_data = []
weekly_sales_data = []
for i, channel_name in enumerate(st.session_state["channels_list"]):
color = color_palette[i % len(color_palette)]
weekly_spends_data.append(
go.Bar(
x=x,
y=_scenario.channels[channel_name].actual_spends
* _scenario.channels[channel_name].conversion_rate,
name=channel_name_formating(channel_name),
hovertemplate="Date:%{x}
Spend:%{y:$.2s}",
legendgroup=channel_name,
marker_color=color,
)
)
weekly_sales_data.append(
go.Bar(
x=x,
y=_scenario.channels[channel_name].actual_sales,
name=channel_name_formating(channel_name),
hovertemplate="Date:%{x}
Revenue:%{y:$.2s}",
legendgroup=channel_name,
showlegend=False,
marker_color=color,
)
)
for _d in weekly_spends_data:
weekly_contribution_fig.add_trace(_d, row=1, col=1)
for _d in weekly_sales_data:
weekly_contribution_fig.add_trace(_d, row=1, col=2)
weekly_contribution_fig.add_trace(
go.Bar(
x=x,
y=_scenario.constant + _scenario.correction,
name="Non Media",
hovertemplate="Date:%{x}
Revenue:%{y:$.2s}",
marker_color=color_palette[-1],
),
row=1,
col=2,
)
weekly_contribution_fig.update_layout(
barmode="stack",
title="Channel contribution by week",
xaxis_title="Date",
)
weekly_contribution_fig.update_xaxes(showgrid=False)
weekly_contribution_fig.update_yaxes(showgrid=False)
return weekly_contribution_fig
def create_channel_spends_sales_plot(channel, target_col):
if channel is not None:
x = channel.dates
_spends = channel.actual_spends * channel.conversion_rate
_sales = channel.actual_sales
channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
channel_sales_spends_fig.add_trace(
go.Bar(
x=x,
y=_sales,
marker_color=color_palette[
3
], # You can choose a color from the palette
name=target_col,
hovertemplate="Date:%{x}
Revenue:%{y:$.2s}",
),
secondary_y=False,
)
channel_sales_spends_fig.add_trace(
go.Scatter(
x=x,
y=_spends,
line=dict(
color=color_palette[2]
), # You can choose another color from the palette
name="Spends",
hovertemplate="Date:%{x}
Spend:%{y:$.2s}",
),
secondary_y=True,
)
channel_sales_spends_fig.update_layout(
xaxis_title="Date",
yaxis_title=target_col,
yaxis2_title="Spend ($)",
title="Weekly Channel Spends and " + target_col,
)
channel_sales_spends_fig.update_xaxes(showgrid=False)
channel_sales_spends_fig.update_yaxes(showgrid=False)
else:
raw_df = st.session_state["raw_df"]
df = raw_df.sort_values(by="Date")
x = df.Date
scenario = class_from_dict(st.session_state["default_scenario_dict"])
_sales = scenario.constant + scenario.correction
channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
channel_sales_spends_fig.add_trace(
go.Bar(
x=x,
y=_sales,
marker_color=color_palette[
0
], # You can choose a color from the palette
name="Revenue",
hovertemplate="Date:%{x}
Revenue:%{y:$.2s}",
),
secondary_y=False,
)
channel_sales_spends_fig.update_layout(
xaxis_title="Date",
yaxis_title="Revenue",
yaxis2_title="Spend ($)",
title="Channel spends and Revenue week-wise",
)
channel_sales_spends_fig.update_xaxes(showgrid=False)
channel_sales_spends_fig.update_yaxes(showgrid=False)
return channel_sales_spends_fig
def format_numbers(value, n_decimals=1, include_indicator=True):
if include_indicator:
return f"{CURRENCY_INDICATOR} {numerize(value,n_decimals)}"
else:
return f"{numerize(value,n_decimals)}"
def decimal_formater(num_string, n_decimals=1):
parts = num_string.split(".")
if len(parts) == 1:
return num_string + "." + "0" * n_decimals
else:
to_be_padded = n_decimals - len(parts[-1])
if to_be_padded > 0:
return num_string + "0" * to_be_padded
else:
return num_string
def channel_name_formating(channel_name):
name_mod = channel_name.replace("_", " ")
if name_mod.lower().endswith(" imp"):
name_mod = name_mod.replace("Imp", "Spend")
elif name_mod.lower().endswith(" clicks"):
name_mod = name_mod.replace("Clicks", "Spend")
return name_mod
def send_email(email, message):
s = smtplib.SMTP("smtp.gmail.com", 587)
s.starttls()
s.login("geethu4444@gmail.com", "jgydhpfusuremcol")
s.sendmail("geethu4444@gmail.com", email, message)
s.quit()
# if __name__ == "__main__":
# initialize_data()