Spaces:
Sleeping
Sleeping
import evaluate | |
from evaluate.utils import launch_gradio_widget | |
import gradio as gr | |
module = evaluate.load("saicharan2804/molgenevalmetric") | |
# launch_gradio_widget(module) | |
iface = gr.Interface( | |
fn = module.compute, | |
inputs=[ | |
gr.File(label="Generated SMILES"), | |
gr.File(label="Training Data", value=None), | |
], | |
outputs="text" | |
) | |
iface.launch() | |
# import pandas as pd | |
# from molgenevalmetric import penalized_logp | |
# import evaluate | |
# df = pd.read_csv('/Users/saicharan/chembl_10000.csv') | |
# ls= df['SMILES'].tolist() | |
# ls_gen = ls[0:500] | |
# ls_train = ls[500:1000] | |
# print('computing') | |
# print(penalized_logp(gen=ls_gen)) | |
# print(SYBAscore(gen=ls_gen)) | |
# print(qed_metric(gen=ls_gen)) | |
# print(logP_metric(gen=ls_gen)) | |
# print(average_sascore(gen=ls_gen)) | |
# print(oracles(gen=ls_gen, train=ls_train)) | |
# met = evaluate.load("saicharan2804/molgenevalmetric") | |
# print(met.compute(gensmi = ls_gen, trainsmi = ls_train)) |