Spaces:
Sleeping
Sleeping
saicharan2804
commited on
Commit
·
2727a59
1
Parent(s):
2e76d65
cleaned code
Browse files- __pycache__/molgenevalmetric.cpython-312.pyc +0 -0
- app.py +26 -197
- molgenevalmetric.py +28 -125
__pycache__/molgenevalmetric.cpython-312.pyc
CHANGED
Binary files a/__pycache__/molgenevalmetric.cpython-312.pyc and b/__pycache__/molgenevalmetric.cpython-312.pyc differ
|
|
app.py
CHANGED
@@ -1,209 +1,38 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
df = pd.read_csv('/Users/saicharan/chembl_10000.csv')
|
3 |
-
from molgenevalmetric import SYBAscore
|
4 |
-
|
5 |
import evaluate
|
6 |
-
|
7 |
-
|
8 |
-
ls= df['SMILES'].tolist()
|
9 |
-
ls_gen = ls[0:500]
|
10 |
-
ls_train = ls[500:1000]
|
11 |
-
|
12 |
-
print('computing')
|
13 |
-
# print(SYBAscore(gen=ls_gen))
|
14 |
-
print(met.compute(gensmi = ls_gen, trainsmi = ls_train))
|
15 |
-
# print(qed_metric(gen=ls_gen))
|
16 |
-
# print(logP_metric(gen=ls_gen))
|
17 |
-
# print(average_sascore(gen=ls_gen))
|
18 |
-
|
19 |
-
# print(oracles(gen=ls_gen, train=ls_train))
|
20 |
|
21 |
-
|
22 |
-
#
|
23 |
-
# import gradio as gr
|
24 |
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
# fn = module,
|
30 |
-
# inputs=[
|
31 |
-
# gr.File(label="Generated SMILES"),
|
32 |
-
# gr.File(label="Training Data", value=None),
|
33 |
-
# ],
|
34 |
-
# outputs="text"
|
35 |
-
# )
|
36 |
|
37 |
-
# iface.launch()
|
38 |
|
39 |
# import pandas as pd
|
|
|
|
|
40 |
|
41 |
-
# df = pd.read_csv('/
|
42 |
-
|
43 |
-
# df = df.rename(columns={'canonical_smiles': 'SMILES'})
|
44 |
-
|
45 |
-
# df = df[0:10000]
|
46 |
-
|
47 |
-
# print(df[['SMILES']].to_csv('/home/saicharan/Downloads/chembl_10000.csv'))
|
48 |
-
# from SCScore import SCScorer
|
49 |
-
|
50 |
-
|
51 |
-
# '''
|
52 |
-
# This is a standalone, importable SCScorer model. It does not have tensorflow as a
|
53 |
-
# dependency and is a more attractive option for deployment. The calculations are
|
54 |
-
# fast enough that there is no real reason to use GPUs (via tf) instead of CPUs (via np)
|
55 |
-
# '''
|
56 |
-
|
57 |
-
# import numpy as np
|
58 |
-
# import time
|
59 |
-
# import rdkit.Chem as Chem
|
60 |
-
# import rdkit.Chem.AllChem as AllChem
|
61 |
-
# import json
|
62 |
-
# import gzip
|
63 |
-
# import six
|
64 |
-
|
65 |
-
# import os
|
66 |
-
# project_root = os.path.dirname(os.path.dirname(__file__))
|
67 |
-
|
68 |
-
# score_scale = 5.0
|
69 |
-
# min_separation = 0.25
|
70 |
-
|
71 |
-
# FP_len = 1024
|
72 |
-
# FP_rad = 2
|
73 |
-
|
74 |
-
# def sigmoid(x):
|
75 |
-
# return 1 / (1 + np.exp(-x))
|
76 |
-
|
77 |
-
# class SCScorer():
|
78 |
-
# def __init__(self, score_scale=score_scale):
|
79 |
-
# self.vars = []
|
80 |
-
# self.score_scale = score_scale
|
81 |
-
# self._restored = False
|
82 |
-
|
83 |
-
# def restore(self, weight_path=os.path.join('model.ckpt-10654.as_numpy.json.gz'), FP_rad=FP_rad, FP_len=FP_len):
|
84 |
-
# self.FP_len = FP_len; self.FP_rad = FP_rad
|
85 |
-
# self._load_vars(weight_path)
|
86 |
-
# # print('Restored variables from {}'.format(weight_path))
|
87 |
-
|
88 |
-
# if 'uint8' in weight_path or 'counts' in weight_path:
|
89 |
-
# def mol_to_fp(self, mol):
|
90 |
-
# if mol is None:
|
91 |
-
# return np.array((self.FP_len,), dtype=np.uint8)
|
92 |
-
# fp = AllChem.GetMorganFingerprint(mol, self.FP_rad, useChirality=True) # uitnsparsevect
|
93 |
-
# fp_folded = np.zeros((self.FP_len,), dtype=np.uint8)
|
94 |
-
# for k, v in six.iteritems(fp.GetNonzeroElements()):
|
95 |
-
# fp_folded[k % self.FP_len] += v
|
96 |
-
# return np.array(fp_folded)
|
97 |
-
# else:
|
98 |
-
# def mol_to_fp(self, mol):
|
99 |
-
# if mol is None:
|
100 |
-
# return np.zeros((self.FP_len,), dtype=np.float32)
|
101 |
-
# return np.array(AllChem.GetMorganFingerprintAsBitVect(mol, self.FP_rad, nBits=self.FP_len,
|
102 |
-
# useChirality=True), dtype=np.bool_)
|
103 |
-
# self.mol_to_fp = mol_to_fp
|
104 |
-
|
105 |
-
# self._restored = True
|
106 |
-
# return self
|
107 |
-
|
108 |
-
# def smi_to_fp(self, smi):
|
109 |
-
# if not smi:
|
110 |
-
# return np.zeros((self.FP_len,), dtype=np.float32)
|
111 |
-
# return self.mol_to_fp(self, Chem.MolFromSmiles(smi))
|
112 |
-
|
113 |
-
# def apply(self, x):
|
114 |
-
# if not self._restored:
|
115 |
-
# raise ValueError('Must restore model weights!')
|
116 |
-
# # Each pair of vars is a weight and bias term
|
117 |
-
# for i in range(0, len(self.vars), 2):
|
118 |
-
# last_layer = (i == len(self.vars)-2)
|
119 |
-
# W = self.vars[i]
|
120 |
-
# b = self.vars[i+1]
|
121 |
-
# x = np.matmul(x, W) + b
|
122 |
-
# if not last_layer:
|
123 |
-
# x = x * (x > 0) # ReLU
|
124 |
-
# x = 1 + (score_scale - 1) * sigmoid(x)
|
125 |
-
# return x
|
126 |
-
|
127 |
-
# def get_score_from_smi(self, smi='', v=False):
|
128 |
-
# if not smi:
|
129 |
-
# return ('', 0.)
|
130 |
-
# fp = np.array((self.smi_to_fp(smi)), dtype=np.float32)
|
131 |
-
# if sum(fp) == 0:
|
132 |
-
# if v: print('Could not get fingerprint?')
|
133 |
-
# cur_score = 0.
|
134 |
-
# else:
|
135 |
-
# # Run
|
136 |
-
# cur_score = self.apply(fp)
|
137 |
-
# if v: print('Score: {}'.format(cur_score))
|
138 |
-
# mol = Chem.MolFromSmiles(smi)
|
139 |
-
# if mol:
|
140 |
-
# smi = Chem.MolToSmiles(mol, isomericSmiles=True, kekuleSmiles=True)
|
141 |
-
# else:
|
142 |
-
# smi = ''
|
143 |
-
# return (smi, cur_score)
|
144 |
-
|
145 |
-
# def get_avg_score(self, smis):
|
146 |
-
# """
|
147 |
-
# Compute the average score for a list of SMILES strings.
|
148 |
-
|
149 |
-
# Args:
|
150 |
-
# smis (list of str): A list of SMILES strings.
|
151 |
-
|
152 |
-
# Returns:
|
153 |
-
# float: The average score of the given SMILES strings.
|
154 |
-
# """
|
155 |
-
# if not smis: # Check if the list is empty
|
156 |
-
# return 0.0
|
157 |
-
|
158 |
-
# total_score = 0.0
|
159 |
-
# valid_smiles_count = 0
|
160 |
-
|
161 |
-
# for smi in smis:
|
162 |
-
# _, score = self.get_score_from_smi(smi)
|
163 |
-
# if score > 0: # Assuming only positive scores are valid
|
164 |
-
# total_score += score
|
165 |
-
# valid_smiles_count += 1
|
166 |
-
|
167 |
-
# # Avoid division by zero
|
168 |
-
# if valid_smiles_count == 0:
|
169 |
-
# return 0.0
|
170 |
-
# else:
|
171 |
-
# return total_score / valid_smiles_count
|
172 |
-
|
173 |
-
# def _load_vars(self, weight_path):
|
174 |
-
# if weight_path.endswith('pickle'):
|
175 |
-
# import pickle
|
176 |
-
# with open(weight_path, 'rb') as fid:
|
177 |
-
# self.vars = pickle.load(fid)
|
178 |
-
# self.vars = [x.tolist() for x in self.vars]
|
179 |
-
# elif weight_path.endswith('json.gz'):
|
180 |
-
# with gzip.GzipFile(weight_path, 'r') as fin: # 4. gzip
|
181 |
-
# json_bytes = fin.read() # 3. bytes (i.e. UTF-8)
|
182 |
-
# json_str = json_bytes.decode('utf-8') # 2. string (i.e. JSON)
|
183 |
-
# self.vars = json.loads(json_str)
|
184 |
-
# self.vars = [np.array(x) for x in self.vars]
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
# from myscscore.SCScore import SCScorer
|
191 |
-
# import pandas as pd
|
192 |
-
|
193 |
-
# model = SCScorer()
|
194 |
-
# model.restore()
|
195 |
-
# # import evaluate
|
196 |
-
# # molgenevalmetric = evaluate.load("saicharan2804/molgenevalmetric")
|
197 |
-
|
198 |
-
# df = pd.read_csv('/home/saicharan/Downloads/chembl_10000.csv')
|
199 |
-
|
200 |
# ls= df['SMILES'].tolist()
|
201 |
-
# ls_gen = ls[0:
|
202 |
-
# ls_train = ls[
|
203 |
|
204 |
# print('computing')
|
205 |
-
#
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
-
#
|
208 |
-
# print(
|
209 |
-
# # print(molgenevalmetric.compute(gensmi = ls_gen, trainsmi = ls_train))
|
|
|
|
|
|
|
|
|
|
|
1 |
import evaluate
|
2 |
+
from evaluate.utils import launch_gradio_widget
|
3 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
module = evaluate.load("saicharan2804/molgenevalmetric")
|
6 |
+
# launch_gradio_widget(module)
|
|
|
7 |
|
8 |
+
iface = gr.Interface(
|
9 |
+
fn = module.compute,
|
10 |
+
inputs=[
|
11 |
+
gr.File(label="Generated SMILES"),
|
12 |
+
gr.File(label="Training Data", value=None),
|
13 |
+
],
|
14 |
+
outputs="text"
|
15 |
+
)
|
16 |
|
17 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
|
|
19 |
|
20 |
# import pandas as pd
|
21 |
+
# from molgenevalmetric import penalized_logp
|
22 |
+
# import evaluate
|
23 |
|
24 |
+
# df = pd.read_csv('/Users/saicharan/chembl_10000.csv')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
# ls= df['SMILES'].tolist()
|
26 |
+
# ls_gen = ls[0:500]
|
27 |
+
# ls_train = ls[500:1000]
|
28 |
|
29 |
# print('computing')
|
30 |
+
# print(penalized_logp(gen=ls_gen))
|
31 |
+
# print(SYBAscore(gen=ls_gen))
|
32 |
+
# print(qed_metric(gen=ls_gen))
|
33 |
+
# print(logP_metric(gen=ls_gen))
|
34 |
+
# print(average_sascore(gen=ls_gen))
|
35 |
+
# print(oracles(gen=ls_gen, train=ls_train))
|
36 |
|
37 |
+
# met = evaluate.load("saicharan2804/molgenevalmetric")
|
38 |
+
# print(met.compute(gensmi = ls_gen, trainsmi = ls_train))
|
|
molgenevalmetric.py
CHANGED
@@ -2,39 +2,24 @@
|
|
2 |
import evaluate
|
3 |
import datasets
|
4 |
import pandas as pd
|
5 |
-
from tdc import Evaluator
|
6 |
-
from tdc import Oracle
|
7 |
-
from rdkit.Chem.QED import qed
|
8 |
-
from rdkit.Chem.Crippen import MolLogP
|
9 |
-
import os
|
10 |
-
from collections import Counter
|
11 |
-
from functools import partial
|
12 |
import numpy as np
|
13 |
-
import pandas as pd
|
14 |
import scipy.sparse
|
15 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
from rdkit import Chem
|
17 |
-
from rdkit.Chem import AllChem
|
18 |
from rdkit.Chem import MACCSkeys
|
19 |
from rdkit.Chem.AllChem import GetMorganFingerprintAsBitVect as Morgan
|
20 |
from rdkit.Chem.QED import qed
|
21 |
-
from rdkit.Chem.Scaffolds import MurckoScaffold
|
22 |
-
from rdkit.Chem import Descriptors
|
23 |
-
from multiprocessing import Pool
|
24 |
-
from collections import UserList, defaultdict
|
25 |
-
import numpy as np
|
26 |
-
import pandas as pd
|
27 |
-
from rdkit import rdBase
|
28 |
from rdkit.Contrib.SA_Score import sascorer
|
29 |
-
import sys
|
30 |
-
from rdkit.Chem import RDConfig
|
31 |
-
import os
|
32 |
-
import pandas as pd
|
33 |
-
from fcd_torch import FCD
|
34 |
-
from syba.syba import SybaClassifier
|
35 |
|
|
|
36 |
from myscscore.SCScore import SCScorer
|
37 |
-
import warnings
|
38 |
|
39 |
|
40 |
def get_mol(smiles_or_mol):
|
@@ -196,7 +181,7 @@ def calculate_sa_score(smiles):
|
|
196 |
Returns:
|
197 |
- float: SA score of the molecule, or None if the molecule couldn't be created.
|
198 |
"""
|
199 |
-
mol =
|
200 |
if mol:
|
201 |
return sascorer.calculateScore(mol)
|
202 |
else:
|
@@ -431,7 +416,7 @@ def qed_metric(gen):
|
|
431 |
qed_scores = []
|
432 |
for smiles in gen:
|
433 |
try:
|
434 |
-
mol =
|
435 |
if mol: # Ensure molecule is valid
|
436 |
qed_scores.append(qed(mol))
|
437 |
except Exception as e:
|
@@ -461,7 +446,7 @@ def logP_metric(gen):
|
|
461 |
logP_values = []
|
462 |
for smiles in gen:
|
463 |
try:
|
464 |
-
mol =
|
465 |
if mol: # Ensure molecule is valid
|
466 |
logP_values.append(MolLogP(mol))
|
467 |
except Exception as e:
|
@@ -473,45 +458,24 @@ def logP_metric(gen):
|
|
473 |
else:
|
474 |
return 0.0 # Return 0 or suitable value if no valid molecules are processed
|
475 |
|
476 |
-
|
477 |
-
def oracles(gen, train):
|
478 |
-
|
479 |
"""
|
480 |
-
Computes
|
481 |
|
482 |
Parameters:
|
483 |
-
-
|
484 |
-
- train (List[str]): List of training set SMILES strings.
|
485 |
|
486 |
Returns:
|
487 |
-
-
|
488 |
-
"""
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
# 'DRD2', 'LogP', 'Rediscovery', 'Similarity',
|
495 |
-
# 'Median', 'Isomers', 'Valsartan_SMARTS', 'Hop'
|
496 |
-
# ]
|
497 |
-
|
498 |
-
oracle_list = ['QED', 'LogP', 'SA']
|
499 |
-
|
500 |
-
for oracle_name in oracle_list:
|
501 |
-
# print(oracle_name)
|
502 |
-
oracle = Oracle(name=oracle_name)
|
503 |
-
if oracle_name in ['Rediscovery', 'MPO', 'Similarity', 'Median', 'Isomers', 'Hop']:
|
504 |
-
score = oracle(gen)
|
505 |
-
if isinstance(score, dict):
|
506 |
-
score = {key: sum(values)/len(values) for key, values in score.items()}
|
507 |
-
else:
|
508 |
-
score = oracle(gen)
|
509 |
-
if isinstance(score, list):
|
510 |
-
score = sum(score) / len(score)
|
511 |
|
512 |
-
|
513 |
-
|
514 |
-
return result
|
515 |
|
516 |
|
517 |
|
@@ -533,33 +497,7 @@ Returns:
|
|
533 |
|
534 |
|
535 |
_CITATION = """
|
536 |
-
|
537 |
-
author = {Daniil Polykovskiy and
|
538 |
-
Alexander Zhebrak and
|
539 |
-
Benjam{\'{\i}}n S{\'{a}}nchez{-}Lengeling and
|
540 |
-
Sergey Golovanov and
|
541 |
-
Oktai Tatanov and
|
542 |
-
Stanislav Belyaev and
|
543 |
-
Rauf Kurbanov and
|
544 |
-
Aleksey Artamonov and
|
545 |
-
Vladimir Aladinskiy and
|
546 |
-
Mark Veselov and
|
547 |
-
Artur Kadurin and
|
548 |
-
Sergey I. Nikolenko and
|
549 |
-
Al{\'{a}}n Aspuru{-}Guzik and
|
550 |
-
Alex Zhavoronkov},
|
551 |
-
title = {Molecular Sets {(MOSES):} {A} Benchmarking Platform for Molecular
|
552 |
-
Generation Models},
|
553 |
-
journal = {CoRR},
|
554 |
-
volume = {abs/1811.12823},
|
555 |
-
year = {2018},
|
556 |
-
url = {http://arxiv.org/abs/1811.12823},
|
557 |
-
eprinttype = {arXiv},
|
558 |
-
eprint = {1811.12823},
|
559 |
-
timestamp = {Fri, 26 Nov 2021 15:34:30 +0100},
|
560 |
-
biburl = {https://dblp.org/rec/journals/corr/abs-1811-12823.bib},
|
561 |
-
bibsource = {dblp computer science bibliography, https://dblp.org}
|
562 |
-
}
|
563 |
"""
|
564 |
|
565 |
|
@@ -582,7 +520,7 @@ class molgenevalmetric(evaluate.Metric):
|
|
582 |
}
|
583 |
),
|
584 |
|
585 |
-
reference_urls=["https://github.com/molecularsets/moses", "https://tdcommons.ai/functions/oracles/"],
|
586 |
)
|
587 |
|
588 |
def _compute(self, gensmi, trainsmi):
|
@@ -595,46 +533,11 @@ class molgenevalmetric(evaluate.Metric):
|
|
595 |
metrics['FCD'] = fcd_metric(gen = gensmi, train = trainsmi)
|
596 |
metrics['QED'] = qed_metric(gen=gensmi)
|
597 |
metrics['LogP'] = logP_metric(gen=gensmi)
|
|
|
598 |
metrics['SA'] = average_sascore(gen=gensmi)
|
599 |
-
metrics['
|
600 |
metrics['SYBA'] = SYBAscore(gen=gensmi)
|
601 |
-
metrics['Oracles'] = oracles(gen = gensmi, train = trainsmi)
|
602 |
|
603 |
return metrics
|
604 |
|
605 |
-
|
606 |
-
# generated_smiles = [s for s in generated_smiles if s != '']
|
607 |
-
|
608 |
-
# evaluator = Evaluator(name = 'KL_Divergence')
|
609 |
-
# KL_Divergence = evaluator(generated_smiles, train_smiles)
|
610 |
-
|
611 |
-
# Results.update({
|
612 |
-
# "KL_Divergence": KL_Divergence,
|
613 |
-
# })
|
614 |
-
|
615 |
-
|
616 |
-
# oracle_list = [
|
617 |
-
# 'QED', 'SA', 'MPO', 'GSK3B', 'JNK3',
|
618 |
-
# 'DRD2', 'LogP', 'Rediscovery', 'Similarity',
|
619 |
-
# 'Median', 'Isomers', 'Valsartan_SMARTS', 'Hop'
|
620 |
-
# ]
|
621 |
-
|
622 |
-
# for oracle_name in oracle_list:
|
623 |
-
# oracle = Oracle(name=oracle_name)
|
624 |
-
# if oracle_name in ['Rediscovery', 'MPO', 'Similarity', 'Median', 'Isomers', 'Hop']:
|
625 |
-
# score = oracle(generated_smiles)
|
626 |
-
# if isinstance(score, dict):
|
627 |
-
# score = {key: sum(values)/len(values) for key, values in score.items()}
|
628 |
-
# else:
|
629 |
-
# score = oracle(generated_smiles)
|
630 |
-
# if isinstance(score, list):
|
631 |
-
# score = sum(score) / len(score)
|
632 |
-
|
633 |
-
# Results.update({f"{oracle_name}": score})
|
634 |
-
|
635 |
-
# # keys_to_remove = ["FCD/TestSF", "SNN/TestSF", "Frag/TestSF", "Scaf/TestSF"]
|
636 |
-
# # for key in keys_to_remove:
|
637 |
-
# # Results.pop(key, None)
|
638 |
-
|
639 |
-
# return {"results": Results}
|
640 |
-
|
|
|
2 |
import evaluate
|
3 |
import datasets
|
4 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import numpy as np
|
|
|
6 |
import scipy.sparse
|
7 |
import torch
|
8 |
+
import warnings
|
9 |
+
from multiprocessing import Pool
|
10 |
+
from functools import partial
|
11 |
+
from fcd_torch import FCD
|
12 |
+
|
13 |
+
from tdc import Oracle
|
14 |
+
from rdkit.Chem.Crippen import MolLogP
|
15 |
from rdkit import Chem
|
|
|
16 |
from rdkit.Chem import MACCSkeys
|
17 |
from rdkit.Chem.AllChem import GetMorganFingerprintAsBitVect as Morgan
|
18 |
from rdkit.Chem.QED import qed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
from rdkit.Contrib.SA_Score import sascorer
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
from syba.syba import SybaClassifier
|
22 |
from myscscore.SCScore import SCScorer
|
|
|
23 |
|
24 |
|
25 |
def get_mol(smiles_or_mol):
|
|
|
181 |
Returns:
|
182 |
- float: SA score of the molecule, or None if the molecule couldn't be created.
|
183 |
"""
|
184 |
+
mol = get_mol(smiles)
|
185 |
if mol:
|
186 |
return sascorer.calculateScore(mol)
|
187 |
else:
|
|
|
416 |
qed_scores = []
|
417 |
for smiles in gen:
|
418 |
try:
|
419 |
+
mol = get_mol(smiles)
|
420 |
if mol: # Ensure molecule is valid
|
421 |
qed_scores.append(qed(mol))
|
422 |
except Exception as e:
|
|
|
446 |
logP_values = []
|
447 |
for smiles in gen:
|
448 |
try:
|
449 |
+
mol = get_mol(smiles)
|
450 |
if mol: # Ensure molecule is valid
|
451 |
logP_values.append(MolLogP(mol))
|
452 |
except Exception as e:
|
|
|
458 |
else:
|
459 |
return 0.0 # Return 0 or suitable value if no valid molecules are processed
|
460 |
|
461 |
+
def penalized_logp(gen):
|
|
|
|
|
462 |
"""
|
463 |
+
Computes the average PyTDC's penalized logP value for a list of SMILES strings.
|
464 |
|
465 |
Parameters:
|
466 |
+
- mols (List[str]): List of SMILES strings representing the molecules.
|
|
|
467 |
|
468 |
Returns:
|
469 |
+
- float: Average penalized logP value for the list of molecules.
|
470 |
+
"""
|
471 |
+
oracle = Oracle('LogP')
|
472 |
+
|
473 |
+
score = oracle(gen)
|
474 |
+
if isinstance(score, list):
|
475 |
+
score = sum(score) / len(score)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
476 |
|
477 |
+
return score
|
478 |
+
|
|
|
479 |
|
480 |
|
481 |
|
|
|
497 |
|
498 |
|
499 |
_CITATION = """
|
500 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
501 |
"""
|
502 |
|
503 |
|
|
|
520 |
}
|
521 |
),
|
522 |
|
523 |
+
reference_urls=["https://github.com/molecularsets/moses", "https://tdcommons.ai/functions/oracles/", "https://github.com/lich-uct/syba", "https://github.com/connorcoley/scscore"],
|
524 |
)
|
525 |
|
526 |
def _compute(self, gensmi, trainsmi):
|
|
|
533 |
metrics['FCD'] = fcd_metric(gen = gensmi, train = trainsmi)
|
534 |
metrics['QED'] = qed_metric(gen=gensmi)
|
535 |
metrics['LogP'] = logP_metric(gen=gensmi)
|
536 |
+
metrics['Penalized LogP'] = penalized_logp(gen=gensmi)
|
537 |
metrics['SA'] = average_sascore(gen=gensmi)
|
538 |
+
metrics['SCScore'] = synthetic_complexity_score(gen=gensmi)
|
539 |
metrics['SYBA'] = SYBAscore(gen=gensmi)
|
540 |
+
# metrics['Oracles'] = oracles(gen = gensmi, train = trainsmi)
|
541 |
|
542 |
return metrics
|
543 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|