Update app.py
Browse files
app.py
CHANGED
@@ -7,19 +7,21 @@ import yolov9
|
|
7 |
HTML_TEMPLATE = """
|
8 |
<style>
|
9 |
body {
|
10 |
-
background: linear-gradient(135deg, #
|
11 |
-
font-family: '
|
12 |
color: #ecf0f1;
|
|
|
13 |
}
|
14 |
#app-header {
|
15 |
text-align: center;
|
16 |
-
background: rgba(
|
17 |
-
padding:
|
18 |
border-radius: 20px;
|
19 |
-
box-shadow: 0
|
20 |
position: relative;
|
21 |
overflow: hidden;
|
22 |
-
margin-bottom:
|
|
|
23 |
}
|
24 |
#app-header::before {
|
25 |
content: "";
|
@@ -28,89 +30,104 @@ HTML_TEMPLATE = """
|
|
28 |
left: -50%;
|
29 |
width: 200%;
|
30 |
height: 200%;
|
31 |
-
background: radial-gradient(circle, rgba(
|
32 |
-
animation: shimmer
|
33 |
}
|
34 |
@keyframes shimmer {
|
35 |
0% { transform: rotate(0deg); }
|
36 |
100% { transform: rotate(360deg); }
|
37 |
}
|
38 |
#app-header h1 {
|
39 |
-
color: #
|
40 |
-
font-size:
|
41 |
-
margin-bottom:
|
42 |
-
text-shadow: 2px 2px 4px rgba(0,0,0,0.
|
43 |
}
|
44 |
#app-header p {
|
45 |
-
font-size: 1.
|
46 |
-
color: #
|
47 |
}
|
48 |
.feature-container {
|
49 |
display: flex;
|
50 |
justify-content: center;
|
51 |
-
gap:
|
52 |
-
margin-top:
|
53 |
flex-wrap: wrap;
|
54 |
}
|
55 |
.feature {
|
56 |
position: relative;
|
57 |
-
transition:
|
58 |
border-radius: 15px;
|
59 |
overflow: hidden;
|
60 |
-
background:
|
61 |
-
box-shadow: 0
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
}
|
63 |
.feature:hover {
|
64 |
-
transform: translateY(-
|
65 |
-
box-shadow: 0
|
|
|
66 |
}
|
67 |
.feature-icon {
|
68 |
-
font-size:
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
71 |
}
|
72 |
.feature-description {
|
73 |
-
background-color: #34495e;
|
74 |
color: #ecf0f1;
|
75 |
-
|
76 |
-
font-size: 0.9em;
|
77 |
text-align: center;
|
|
|
|
|
|
|
|
|
|
|
78 |
}
|
79 |
.artifact {
|
80 |
position: absolute;
|
81 |
-
background: radial-gradient(circle, rgba(
|
82 |
border-radius: 50%;
|
83 |
opacity: 0.5;
|
|
|
84 |
}
|
85 |
.artifact.large {
|
86 |
-
width:
|
87 |
-
height:
|
88 |
-
top: -
|
89 |
-
left: -
|
90 |
-
animation: float
|
91 |
}
|
92 |
.artifact.medium {
|
93 |
-
width:
|
94 |
-
height:
|
95 |
-
bottom: -
|
96 |
-
right: -
|
97 |
-
animation: float
|
98 |
}
|
99 |
.artifact.small {
|
100 |
-
width:
|
101 |
-
height:
|
102 |
top: 50%;
|
103 |
left: 50%;
|
104 |
transform: translate(-50%, -50%);
|
105 |
-
animation: pulse
|
106 |
}
|
107 |
@keyframes float {
|
108 |
0%, 100% { transform: translateY(0) rotate(0deg); }
|
109 |
-
50% { transform: translateY(-
|
110 |
}
|
111 |
@keyframes pulse {
|
112 |
-
0% { transform: scale(1); opacity: 0.5; }
|
113 |
-
100% { transform: scale(1.
|
114 |
}
|
115 |
</style>
|
116 |
<div id="app-header">
|
@@ -118,28 +135,29 @@ HTML_TEMPLATE = """
|
|
118 |
<div class="artifact medium"></div>
|
119 |
<div class="artifact small"></div>
|
120 |
<h1>YOLOv9: Manhole Detector</h1>
|
121 |
-
<p>
|
122 |
<div class="feature-container">
|
123 |
<div class="feature">
|
124 |
-
<div class="feature-icon"
|
125 |
-
<div class="feature-description">High
|
126 |
</div>
|
127 |
<div class="feature">
|
128 |
<div class="feature-icon">β‘</div>
|
129 |
-
<div class="feature-description">Fast Processing</div>
|
130 |
</div>
|
131 |
<div class="feature">
|
132 |
<div class="feature-icon">πΌοΈ</div>
|
133 |
-
<div class="feature-description">Image
|
134 |
</div>
|
135 |
<div class="feature">
|
136 |
-
<div class="feature-icon"
|
137 |
-
<div class="feature-description">
|
138 |
</div>
|
139 |
</div>
|
140 |
</div>
|
141 |
"""
|
142 |
|
|
|
143 |
def yolov9_inference(img_path, image_size, conf_threshold, iou_threshold):
|
144 |
model = yolov9.load('./best.pt')
|
145 |
model.conf = conf_threshold
|
|
|
7 |
HTML_TEMPLATE = """
|
8 |
<style>
|
9 |
body {
|
10 |
+
background: linear-gradient(135deg, #1a2a6c, #b21f1f, #fdbb2d);
|
11 |
+
font-family: 'Roboto', sans-serif;
|
12 |
color: #ecf0f1;
|
13 |
+
min-height: 100vh;
|
14 |
}
|
15 |
#app-header {
|
16 |
text-align: center;
|
17 |
+
background: rgba(26, 42, 108, 0.8);
|
18 |
+
padding: 40px;
|
19 |
border-radius: 20px;
|
20 |
+
box-shadow: 0 15px 30px rgba(0, 0, 0, 0.4);
|
21 |
position: relative;
|
22 |
overflow: hidden;
|
23 |
+
margin-bottom: 40px;
|
24 |
+
backdrop-filter: blur(10px);
|
25 |
}
|
26 |
#app-header::before {
|
27 |
content: "";
|
|
|
30 |
left: -50%;
|
31 |
width: 200%;
|
32 |
height: 200%;
|
33 |
+
background: radial-gradient(circle, rgba(253,187,45,0.2) 0%, rgba(253,187,45,0) 70%);
|
34 |
+
animation: shimmer 20s infinite linear;
|
35 |
}
|
36 |
@keyframes shimmer {
|
37 |
0% { transform: rotate(0deg); }
|
38 |
100% { transform: rotate(360deg); }
|
39 |
}
|
40 |
#app-header h1 {
|
41 |
+
color: #fdbb2d;
|
42 |
+
font-size: 3em;
|
43 |
+
margin-bottom: 20px;
|
44 |
+
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
|
45 |
}
|
46 |
#app-header p {
|
47 |
+
font-size: 1.3em;
|
48 |
+
color: #ecf0f1;
|
49 |
}
|
50 |
.feature-container {
|
51 |
display: flex;
|
52 |
justify-content: center;
|
53 |
+
gap: 40px;
|
54 |
+
margin-top: 40px;
|
55 |
flex-wrap: wrap;
|
56 |
}
|
57 |
.feature {
|
58 |
position: relative;
|
59 |
+
transition: all 0.4s ease;
|
60 |
border-radius: 15px;
|
61 |
overflow: hidden;
|
62 |
+
background: rgba(178, 31, 31, 0.7);
|
63 |
+
box-shadow: 0 8px 20px rgba(0,0,0,0.3);
|
64 |
+
width: 180px;
|
65 |
+
height: 180px;
|
66 |
+
display: flex;
|
67 |
+
flex-direction: column;
|
68 |
+
justify-content: center;
|
69 |
+
align-items: center;
|
70 |
}
|
71 |
.feature:hover {
|
72 |
+
transform: translateY(-15px) rotate(5deg) scale(1.05);
|
73 |
+
box-shadow: 0 20px 40px rgba(0,0,0,0.4);
|
74 |
+
background: rgba(253, 187, 45, 0.8);
|
75 |
}
|
76 |
.feature-icon {
|
77 |
+
font-size: 4em;
|
78 |
+
color: #ecf0f1;
|
79 |
+
margin-bottom: 15px;
|
80 |
+
transition: all 0.4s ease;
|
81 |
+
}
|
82 |
+
.feature:hover .feature-icon {
|
83 |
+
transform: scale(1.2);
|
84 |
}
|
85 |
.feature-description {
|
|
|
86 |
color: #ecf0f1;
|
87 |
+
font-size: 1em;
|
|
|
88 |
text-align: center;
|
89 |
+
padding: 0 10px;
|
90 |
+
transition: all 0.4s ease;
|
91 |
+
}
|
92 |
+
.feature:hover .feature-description {
|
93 |
+
font-weight: bold;
|
94 |
}
|
95 |
.artifact {
|
96 |
position: absolute;
|
97 |
+
background: radial-gradient(circle, rgba(253,187,45,0.3) 0%, rgba(253,187,45,0) 70%);
|
98 |
border-radius: 50%;
|
99 |
opacity: 0.5;
|
100 |
+
filter: blur(40px);
|
101 |
}
|
102 |
.artifact.large {
|
103 |
+
width: 600px;
|
104 |
+
height: 600px;
|
105 |
+
top: -200px;
|
106 |
+
left: -300px;
|
107 |
+
animation: float 30s infinite ease-in-out;
|
108 |
}
|
109 |
.artifact.medium {
|
110 |
+
width: 400px;
|
111 |
+
height: 400px;
|
112 |
+
bottom: -200px;
|
113 |
+
right: -200px;
|
114 |
+
animation: float 25s infinite ease-in-out reverse;
|
115 |
}
|
116 |
.artifact.small {
|
117 |
+
width: 200px;
|
118 |
+
height: 200px;
|
119 |
top: 50%;
|
120 |
left: 50%;
|
121 |
transform: translate(-50%, -50%);
|
122 |
+
animation: pulse 8s infinite alternate;
|
123 |
}
|
124 |
@keyframes float {
|
125 |
0%, 100% { transform: translateY(0) rotate(0deg); }
|
126 |
+
50% { transform: translateY(-30px) rotate(15deg); }
|
127 |
}
|
128 |
@keyframes pulse {
|
129 |
+
0% { transform: scale(1) translate(-50%, -50%); opacity: 0.5; }
|
130 |
+
100% { transform: scale(1.2) translate(-50%, -50%); opacity: 0.8; }
|
131 |
}
|
132 |
</style>
|
133 |
<div id="app-header">
|
|
|
135 |
<div class="artifact medium"></div>
|
136 |
<div class="artifact small"></div>
|
137 |
<h1>YOLOv9: Manhole Detector</h1>
|
138 |
+
<p>Unleash the power of AI to detect manholes with precision</p>
|
139 |
<div class="feature-container">
|
140 |
<div class="feature">
|
141 |
+
<div class="feature-icon">π―</div>
|
142 |
+
<div class="feature-description">High Precision Detection</div>
|
143 |
</div>
|
144 |
<div class="feature">
|
145 |
<div class="feature-icon">β‘</div>
|
146 |
+
<div class="feature-description">Lightning-Fast Processing</div>
|
147 |
</div>
|
148 |
<div class="feature">
|
149 |
<div class="feature-icon">πΌοΈ</div>
|
150 |
+
<div class="feature-description">Dynamic Image Resizing</div>
|
151 |
</div>
|
152 |
<div class="feature">
|
153 |
+
<div class="feature-icon">π§</div>
|
154 |
+
<div class="feature-description">Fine-Tuned Thresholds</div>
|
155 |
</div>
|
156 |
</div>
|
157 |
</div>
|
158 |
"""
|
159 |
|
160 |
+
# The rest of the Python code remains the same
|
161 |
def yolov9_inference(img_path, image_size, conf_threshold, iou_threshold):
|
162 |
model = yolov9.load('./best.pt')
|
163 |
model.conf = conf_threshold
|