Update app.py
Browse files
app.py
CHANGED
@@ -4,59 +4,6 @@ from PIL import Image
|
|
4 |
import os
|
5 |
import yolov9
|
6 |
|
7 |
-
import gradio as gr
|
8 |
-
import torch
|
9 |
-
from PIL import Image
|
10 |
-
import os
|
11 |
-
import yolov9
|
12 |
-
|
13 |
-
def yolov9_inference(img_path, image_size, conf_threshold, iou_threshold):
|
14 |
-
model = yolov9.load('./best.pt')
|
15 |
-
model.conf = conf_threshold
|
16 |
-
model.iou = iou_threshold
|
17 |
-
results = model(img_path, size=image_size)
|
18 |
-
output = results.render()
|
19 |
-
return output[0]
|
20 |
-
|
21 |
-
def app():
|
22 |
-
with gr.Blocks() as demo:
|
23 |
-
gr.HTML(HTML_TEMPLATE)
|
24 |
-
|
25 |
-
with gr.Row():
|
26 |
-
with gr.Column(scale=1, min_width=300):
|
27 |
-
img_path = gr.Image(type="filepath", label="Upload Image")
|
28 |
-
image_size = gr.Slider(label="Image Size", minimum=320, maximum=1280, step=32, value=640)
|
29 |
-
conf_threshold = gr.Slider(label="Confidence Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.4)
|
30 |
-
iou_threshold = gr.Slider(label="IoU Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.5)
|
31 |
-
detect_button = gr.Button("Detect Manholes", variant="primary")
|
32 |
-
|
33 |
-
with gr.Column(scale=1, min_width=300):
|
34 |
-
output_numpy = gr.Image(type="numpy", label="Detection Result")
|
35 |
-
|
36 |
-
detect_button.click(
|
37 |
-
fn=yolov9_inference,
|
38 |
-
inputs=[img_path, image_size, conf_threshold, iou_threshold],
|
39 |
-
outputs=[output_numpy]
|
40 |
-
)
|
41 |
-
|
42 |
-
gr.Examples(
|
43 |
-
examples=[
|
44 |
-
["./openmanhole.jpg", 640, 0.4, 0.5],
|
45 |
-
["./images.jpeg", 640, 0.4, 0.5],
|
46 |
-
],
|
47 |
-
fn=yolov9_inference,
|
48 |
-
inputs=[img_path, image_size, conf_threshold, iou_threshold],
|
49 |
-
outputs=[output_numpy],
|
50 |
-
cache_examples=True,
|
51 |
-
)
|
52 |
-
|
53 |
-
return demo
|
54 |
-
import gradio as gr
|
55 |
-
import torch
|
56 |
-
from PIL import Image
|
57 |
-
import os
|
58 |
-
import yolov9
|
59 |
-
|
60 |
HTML_TEMPLATE = """
|
61 |
<style>
|
62 |
body {
|
@@ -193,16 +140,46 @@ HTML_TEMPLATE = """
|
|
193 |
</div>
|
194 |
"""
|
195 |
|
196 |
-
# Your existing yolov9_inference function here
|
197 |
def yolov9_inference(img_path, image_size, conf_threshold, iou_threshold):
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
def app():
|
201 |
with gr.Blocks() as demo:
|
202 |
gr.HTML(HTML_TEMPLATE)
|
203 |
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
return demo
|
207 |
|
208 |
css = """
|
|
|
4 |
import os
|
5 |
import yolov9
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
HTML_TEMPLATE = """
|
8 |
<style>
|
9 |
body {
|
|
|
140 |
</div>
|
141 |
"""
|
142 |
|
|
|
143 |
def yolov9_inference(img_path, image_size, conf_threshold, iou_threshold):
|
144 |
+
model = yolov9.load('./best.pt')
|
145 |
+
model.conf = conf_threshold
|
146 |
+
model.iou = iou_threshold
|
147 |
+
results = model(img_path, size=image_size)
|
148 |
+
output = results.render()
|
149 |
+
return output[0]
|
150 |
|
151 |
def app():
|
152 |
with gr.Blocks() as demo:
|
153 |
gr.HTML(HTML_TEMPLATE)
|
154 |
|
155 |
+
with gr.Row():
|
156 |
+
with gr.Column(scale=1, min_width=300):
|
157 |
+
img_path = gr.Image(type="filepath", label="Upload Image")
|
158 |
+
image_size = gr.Slider(label="Image Size", minimum=320, maximum=1280, step=32, value=640)
|
159 |
+
conf_threshold = gr.Slider(label="Confidence Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.4)
|
160 |
+
iou_threshold = gr.Slider(label="IoU Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.5)
|
161 |
+
detect_button = gr.Button("Detect Manholes", variant="primary")
|
162 |
+
|
163 |
+
with gr.Column(scale=1, min_width=300):
|
164 |
+
output_numpy = gr.Image(type="numpy", label="Detection Result")
|
165 |
+
|
166 |
+
detect_button.click(
|
167 |
+
fn=yolov9_inference,
|
168 |
+
inputs=[img_path, image_size, conf_threshold, iou_threshold],
|
169 |
+
outputs=[output_numpy]
|
170 |
+
)
|
171 |
+
|
172 |
+
gr.Examples(
|
173 |
+
examples=[
|
174 |
+
["./openmanhole.jpg", 640, 0.4, 0.5],
|
175 |
+
["./images.jpeg", 640, 0.4, 0.5],
|
176 |
+
],
|
177 |
+
fn=yolov9_inference,
|
178 |
+
inputs=[img_path, image_size, conf_threshold, iou_threshold],
|
179 |
+
outputs=[output_numpy],
|
180 |
+
cache_examples=True,
|
181 |
+
)
|
182 |
+
|
183 |
return demo
|
184 |
|
185 |
css = """
|