safi842's picture
Files for the app
29cdbe6
import argparse
import os
import sys
import pickle
import math
import torch
import numpy as np
from torchvision import utils
from model import Generator, Discriminator
def convert_modconv(vars, source_name, target_name, flip=False):
weight = vars[source_name + '/weight'].value().eval()
mod_weight = vars[source_name + '/mod_weight'].value().eval()
mod_bias = vars[source_name + '/mod_bias'].value().eval()
noise = vars[source_name + '/noise_strength'].value().eval()
bias = vars[source_name + '/bias'].value().eval()
dic = {
'conv.weight': np.expand_dims(weight.transpose((3, 2, 0, 1)), 0),
'conv.modulation.weight': mod_weight.transpose((1, 0)),
'conv.modulation.bias': mod_bias + 1,
'noise.weight': np.array([noise]),
'activate.bias': bias,
}
dic_torch = {}
for k, v in dic.items():
dic_torch[target_name + '.' + k] = torch.from_numpy(v)
if flip:
dic_torch[target_name + '.conv.weight'] = torch.flip(
dic_torch[target_name + '.conv.weight'], [3, 4]
)
return dic_torch
def convert_conv(vars, source_name, target_name, bias=True, start=0):
weight = vars[source_name + '/weight'].value().eval()
dic = {'weight': weight.transpose((3, 2, 0, 1))}
if bias:
dic['bias'] = vars[source_name + '/bias'].value().eval()
dic_torch = {}
dic_torch[target_name + f'.{start}.weight'] = torch.from_numpy(dic['weight'])
if bias:
dic_torch[target_name + f'.{start + 1}.bias'] = torch.from_numpy(dic['bias'])
return dic_torch
def convert_torgb(vars, source_name, target_name):
weight = vars[source_name + '/weight'].value().eval()
mod_weight = vars[source_name + '/mod_weight'].value().eval()
mod_bias = vars[source_name + '/mod_bias'].value().eval()
bias = vars[source_name + '/bias'].value().eval()
dic = {
'conv.weight': np.expand_dims(weight.transpose((3, 2, 0, 1)), 0),
'conv.modulation.weight': mod_weight.transpose((1, 0)),
'conv.modulation.bias': mod_bias + 1,
'bias': bias.reshape((1, 3, 1, 1)),
}
dic_torch = {}
for k, v in dic.items():
dic_torch[target_name + '.' + k] = torch.from_numpy(v)
return dic_torch
def convert_dense(vars, source_name, target_name):
weight = vars[source_name + '/weight'].value().eval()
bias = vars[source_name + '/bias'].value().eval()
dic = {'weight': weight.transpose((1, 0)), 'bias': bias}
dic_torch = {}
for k, v in dic.items():
dic_torch[target_name + '.' + k] = torch.from_numpy(v)
return dic_torch
def update(state_dict, new):
for k, v in new.items():
if k not in state_dict:
raise KeyError(k + ' is not found')
if v.shape != state_dict[k].shape:
raise ValueError(f'Shape mismatch: {v.shape} vs {state_dict[k].shape}')
state_dict[k] = v
def discriminator_fill_statedict(statedict, vars, size):
log_size = int(math.log(size, 2))
update(statedict, convert_conv(vars, f'{size}x{size}/FromRGB', 'convs.0'))
conv_i = 1
for i in range(log_size - 2, 0, -1):
reso = 4 * 2 ** i
update(
statedict,
convert_conv(vars, f'{reso}x{reso}/Conv0', f'convs.{conv_i}.conv1'),
)
update(
statedict,
convert_conv(
vars, f'{reso}x{reso}/Conv1_down', f'convs.{conv_i}.conv2', start=1
),
)
update(
statedict,
convert_conv(
vars, f'{reso}x{reso}/Skip', f'convs.{conv_i}.skip', start=1, bias=False
),
)
conv_i += 1
update(statedict, convert_conv(vars, f'4x4/Conv', 'final_conv'))
update(statedict, convert_dense(vars, f'4x4/Dense0', 'final_linear.0'))
update(statedict, convert_dense(vars, f'Output', 'final_linear.1'))
return statedict
def fill_statedict(state_dict, vars, size):
log_size = int(math.log(size, 2))
for i in range(8):
update(state_dict, convert_dense(vars, f'G_mapping/Dense{i}', f'style.{i + 1}'))
update(
state_dict,
{
'input.input': torch.from_numpy(
vars['G_synthesis/4x4/Const/const'].value().eval()
)
},
)
update(state_dict, convert_torgb(vars, 'G_synthesis/4x4/ToRGB', 'to_rgb1'))
for i in range(log_size - 2):
reso = 4 * 2 ** (i + 1)
update(
state_dict,
convert_torgb(vars, f'G_synthesis/{reso}x{reso}/ToRGB', f'to_rgbs.{i}'),
)
update(state_dict, convert_modconv(vars, 'G_synthesis/4x4/Conv', 'conv1'))
conv_i = 0
for i in range(log_size - 2):
reso = 4 * 2 ** (i + 1)
update(
state_dict,
convert_modconv(
vars,
f'G_synthesis/{reso}x{reso}/Conv0_up',
f'convs.{conv_i}',
flip=True,
),
)
update(
state_dict,
convert_modconv(
vars, f'G_synthesis/{reso}x{reso}/Conv1', f'convs.{conv_i + 1}'
),
)
conv_i += 2
for i in range(0, (log_size - 2) * 2 + 1):
update(
state_dict,
{
f'noises.noise_{i}': torch.from_numpy(
vars[f'G_synthesis/noise{i}'].value().eval()
)
},
)
return state_dict
if __name__ == '__main__':
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using PyTorch device', device)
parser = argparse.ArgumentParser()
parser.add_argument('--repo', type=str, required=True)
parser.add_argument('--gen', action='store_true')
parser.add_argument('--disc', action='store_true')
parser.add_argument('--channel_multiplier', type=int, default=2)
parser.add_argument('path', metavar='PATH')
args = parser.parse_args()
sys.path.append(args.repo)
import dnnlib
from dnnlib import tflib
tflib.init_tf()
with open(args.path, 'rb') as f:
generator, discriminator, g_ema = pickle.load(f)
size = g_ema.output_shape[2]
g = Generator(size, 512, 8, channel_multiplier=args.channel_multiplier)
state_dict = g.state_dict()
state_dict = fill_statedict(state_dict, g_ema.vars, size)
g.load_state_dict(state_dict)
latent_avg = torch.from_numpy(g_ema.vars['dlatent_avg'].value().eval())
ckpt = {'g_ema': state_dict, 'latent_avg': latent_avg}
if args.gen:
g_train = Generator(size, 512, 8, channel_multiplier=args.channel_multiplier)
g_train_state = g_train.state_dict()
g_train_state = fill_statedict(g_train_state, generator.vars, size)
ckpt['g'] = g_train_state
if args.disc:
disc = Discriminator(size, channel_multiplier=args.channel_multiplier)
d_state = disc.state_dict()
d_state = discriminator_fill_statedict(d_state, discriminator.vars, size)
ckpt['d'] = d_state
name = os.path.splitext(os.path.basename(args.path))[0]
outpath = os.path.join(os.getcwd(), f'{name}.pt')
print('Saving', outpath)
try:
torch.save(ckpt, outpath, _use_new_zipfile_serialization=False)
except TypeError:
torch.save(ckpt, outpath)
print('Generating TF-Torch comparison images')
batch_size = {256: 8, 512: 4, 1024: 2}
n_sample = batch_size.get(size, 4)
g = g.to(device)
z = np.random.RandomState(0).randn(n_sample, 512).astype('float32')
with torch.no_grad():
img_pt, _ = g(
[torch.from_numpy(z).to(device)],
truncation=0.5,
truncation_latent=latent_avg.to(device),
)
img_tf = g_ema.run(z, None, randomize_noise=False)
img_tf = torch.from_numpy(img_tf).to(device)
img_diff = ((img_pt + 1) / 2).clamp(0.0, 1.0) - ((img_tf.to(device) + 1) / 2).clamp(
0.0, 1.0
)
img_concat = torch.cat((img_tf, img_pt, img_diff), dim=0)
utils.save_image(
img_concat, name + '.png', nrow=n_sample, normalize=True, range=(-1, 1)
)
print('Done')