safi842 commited on
Commit
29cdbe6
·
1 Parent(s): 30928ab

Files for the app

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +6 -0
  2. FashionGen.py +265 -0
  3. LICENSE +21 -0
  4. README.md +2 -13
  5. TkTorchWindow.py +208 -0
  6. bpe_simple_vocab_16e6.txt.gz +3 -0
  7. cache/components/stylegan2-lookbook_style_ipca_c80_n300000_w.npz +3 -0
  8. clip.py +237 -0
  9. config.py +72 -0
  10. decomposition.py +402 -0
  11. deps/windows/PyOpenGL-3.1.4-cp37-cp37m-win_amd64.whl +3 -0
  12. deps/windows/glumpy-1.1.0-cp37-cp37m-win_amd64.whl +3 -0
  13. deps/windows/pycuda-2019.1.2+cuda101-cp37-cp37m-win_amd64.whl +0 -0
  14. deps/windows/triangle-20190115.3-cp37-cp37m-win_amd64.whl +3 -0
  15. environment.yml +25 -0
  16. estimators.py +218 -0
  17. interactive.py +655 -0
  18. model_clip.py +436 -0
  19. models/__init__.py +11 -0
  20. models/__pycache__/__init__.cpython-310.pyc +0 -0
  21. models/__pycache__/wrappers.cpython-310.pyc +0 -0
  22. models/biggan/__init__.py +8 -0
  23. models/biggan/__pycache__/__init__.cpython-310.pyc +0 -0
  24. models/biggan/pytorch_biggan/.gitignore +110 -0
  25. models/biggan/pytorch_biggan/LICENSE +21 -0
  26. models/biggan/pytorch_biggan/MANIFEST.in +1 -0
  27. models/biggan/pytorch_biggan/README.md +227 -0
  28. models/biggan/pytorch_biggan/assets/output_0.png +0 -0
  29. models/biggan/pytorch_biggan/assets/output_1.png +0 -0
  30. models/biggan/pytorch_biggan/assets/output_2.png +0 -0
  31. models/biggan/pytorch_biggan/full_requirements.txt +5 -0
  32. models/biggan/pytorch_biggan/pytorch_pretrained_biggan/__init__.py +6 -0
  33. models/biggan/pytorch_biggan/pytorch_pretrained_biggan/config.py +70 -0
  34. models/biggan/pytorch_biggan/pytorch_pretrained_biggan/convert_tf_to_pytorch.py +312 -0
  35. models/biggan/pytorch_biggan/pytorch_pretrained_biggan/file_utils.py +249 -0
  36. models/biggan/pytorch_biggan/pytorch_pretrained_biggan/model.py +345 -0
  37. models/biggan/pytorch_biggan/pytorch_pretrained_biggan/utils.py +216 -0
  38. models/biggan/pytorch_biggan/requirements.txt +8 -0
  39. models/biggan/pytorch_biggan/scripts/convert_tf_hub_models.sh +21 -0
  40. models/biggan/pytorch_biggan/scripts/download_tf_hub_models.sh +21 -0
  41. models/biggan/pytorch_biggan/setup.py +69 -0
  42. models/stylegan/__init__.py +17 -0
  43. models/stylegan/__pycache__/__init__.cpython-310.pyc +0 -0
  44. models/stylegan/__pycache__/model.cpython-310.pyc +0 -0
  45. models/stylegan/model.py +456 -0
  46. models/stylegan/stylegan_tf/LICENSE.txt +410 -0
  47. models/stylegan/stylegan_tf/README.md +232 -0
  48. models/stylegan/stylegan_tf/config.py +18 -0
  49. models/stylegan/stylegan_tf/dataset_tool.py +645 -0
  50. models/stylegan/stylegan_tf/dnnlib/__init__.py +20 -0
.gitattributes CHANGED
@@ -32,3 +32,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ deps/windows/glumpy-1.1.0-cp37-cp37m-win_amd64.whl filter=lfs diff=lfs merge=lfs -text
36
+ deps/windows/PyOpenGL-3.1.4-cp37-cp37m-win_amd64.whl filter=lfs diff=lfs merge=lfs -text
37
+ deps/windows/triangle-20190115.3-cp37-cp37m-win_amd64.whl filter=lfs diff=lfs merge=lfs -text
38
+ models/stylegan/stylegan_tf/stylegan-teaser.png filter=lfs diff=lfs merge=lfs -text
39
+ models/stylegan2/stylegan2-pytorch/doc/sample.png filter=lfs diff=lfs merge=lfs -text
40
+ models/stylegan2/stylegan2-pytorch/doc/stylegan2-church-config-f.png filter=lfs diff=lfs merge=lfs -text
FashionGen.py ADDED
@@ -0,0 +1,265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import streamlit as st
3
+ import torch
4
+ import PIL
5
+ import numpy as np
6
+ from PIL import Image
7
+ import imageio
8
+ from models import get_instrumented_model
9
+ from decomposition import get_or_compute
10
+ from config import Config
11
+ from skimage import img_as_ubyte
12
+ import clip
13
+ from torchvision.transforms import Resize, Normalize, Compose, CenterCrop
14
+ from torch.optim import Adam
15
+ from stqdm import stqdm
16
+
17
+ torch.set_num_threads(8)
18
+
19
+ # Speed up computation
20
+ torch.autograd.set_grad_enabled(True)
21
+ #torch.backends.cudnn.benchmark = True
22
+
23
+ # Specify model to use
24
+ config = Config(
25
+ model='StyleGAN2',
26
+ layer='style',
27
+ output_class= 'lookbook',
28
+ components=80,
29
+ use_w=True,
30
+ batch_size=5_000, # style layer quite small
31
+ )
32
+
33
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
34
+
35
+ preprocess = Compose([
36
+ Resize(224),
37
+ CenterCrop(224),
38
+ Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)),
39
+ ])
40
+
41
+ @st.cache_data
42
+ def clip_optimized_latent(text, seed, iterations=25, lr=1e-2):
43
+ seed = int(seed)
44
+ text_input = clip.tokenize([text]).to(device)
45
+
46
+ # Initialize a random latent vector
47
+ latent_vector = model.sample_latent(1,seed=seed).detach()
48
+ latent_vector.requires_grad = True
49
+ latent_vector = [latent_vector]*model.get_max_latents()
50
+ params = [torch.nn.Parameter(latent_vector[i], requires_grad=True) for i in range(len(latent_vector))]
51
+ optimizer = Adam(params, lr=lr)
52
+
53
+ with torch.no_grad():
54
+ text_features = clip_model.encode_text(text_input)
55
+
56
+ #pbar = tqdm(range(iterations), dynamic_ncols=True)
57
+
58
+ for iteration in stqdm(range(iterations)):
59
+ optimizer.zero_grad()
60
+
61
+ # Generate an image from the latent vector
62
+ image = model.sample(params)
63
+ image = image.to(device)
64
+
65
+ # Preprocess the image for the CLIP model
66
+ image = preprocess(image)
67
+ #image = clip_preprocess(Image.fromarray((image_np * 255).astype(np.uint8))).unsqueeze(0).to(device)
68
+
69
+ # Extract features from the image
70
+ image_features = clip_model.encode_image(image)
71
+
72
+ # Calculate the loss and backpropagate
73
+ loss = -torch.cosine_similarity(text_features, image_features).mean()
74
+ loss.backward()
75
+ optimizer.step()
76
+
77
+ #pbar.set_description(f"Loss: {loss.item()}") # Update the progress bar to show the current loss
78
+ w = [param.detach().cpu().numpy() for param in params]
79
+
80
+ return w
81
+
82
+ def mix_w(w1, w2, content, style):
83
+ for i in range(0,5):
84
+ w2[i] = w1[i] * (1 - content) + w2[i] * content
85
+
86
+ for i in range(5, 16):
87
+ w2[i] = w1[i] * (1 - style) + w2[i] * style
88
+
89
+ return w2
90
+
91
+ def display_sample_pytorch(seed, truncation, directions, distances, scale, start, end, w=None, disp=True, save=None, noise_spec=None):
92
+ # blockPrint()
93
+ model.truncation = truncation
94
+ if w is None:
95
+ w = model.sample_latent(1, seed=seed).detach().cpu().numpy()
96
+ w = [w]*model.get_max_latents() # one per layer
97
+ else:
98
+ w_numpy = [x.detach().numpy() for x in w]
99
+ w = [np.expand_dims(x, 0) for x in w_numpy]
100
+ #w = [x.unsqueeze(0) for x in w]
101
+
102
+
103
+ for l in range(start, end):
104
+ for i in range(len(directions)):
105
+ w[l] = w[l] + directions[i] * distances[i] * scale
106
+
107
+ torch.cuda.empty_cache()
108
+ #save image and display
109
+ out = model.sample(w)
110
+ out = out.permute(0, 2, 3, 1).cpu().detach().numpy()
111
+ out = np.clip(out, 0.0, 1.0).squeeze()
112
+
113
+ final_im = Image.fromarray((out * 255).astype(np.uint8)).resize((500,500),Image.LANCZOS)
114
+
115
+
116
+ if save is not None:
117
+ if disp == False:
118
+ print(save)
119
+ final_im.save(f'out/{seed}_{save:05}.png')
120
+ if disp:
121
+ display(final_im)
122
+
123
+ return final_im
124
+
125
+ ## Generate image for app
126
+ def generate_image(content, style, truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer,w1,w2):
127
+
128
+ scale = 1
129
+ params = {'c0': c0,
130
+ 'c1': c1,
131
+ 'c2': c2,
132
+ 'c3': c3,
133
+ 'c4': c4,
134
+ 'c5': c5,
135
+ 'c6': c6}
136
+
137
+ param_indexes = {'c0': 0,
138
+ 'c1': 1,
139
+ 'c2': 2,
140
+ 'c3': 3,
141
+ 'c4': 4,
142
+ 'c5': 5,
143
+ 'c6': 6}
144
+
145
+ directions = []
146
+ distances = []
147
+ for k, v in params.items():
148
+ directions.append(latent_dirs[param_indexes[k]])
149
+ distances.append(v)
150
+
151
+ if w1 is not None and w2 is not None:
152
+ w1 = [torch.from_numpy(x).to(device) for x in w1]
153
+ w2 = [torch.from_numpy(x).to(device) for x in w2]
154
+
155
+
156
+ #w1 = clip_optimized_latent(text1, seed1, iters)
157
+ im1 = model.sample(w1)
158
+ im1_np = im1.permute(0, 2, 3, 1).cpu().detach().numpy()
159
+ im1_np = np.clip(im1_np, 0.0, 1.0).squeeze()
160
+
161
+ #w2 = clip_optimized_latent(text2, seed2, iters)
162
+ im2 = model.sample(w2)
163
+ im2_np = im2.permute(0, 2, 3, 1).cpu().detach().numpy()
164
+ im2_np = np.clip(im2_np, 0.0, 1.0).squeeze()
165
+
166
+ combined_im = np.concatenate([im1_np, im2_np], axis=1)
167
+ input_im = Image.fromarray((combined_im * 255).astype(np.uint8))
168
+
169
+
170
+ mixed_w = mix_w(w1, w2, content, style)
171
+ return input_im, display_sample_pytorch(seed1, truncation, directions, distances, scale, int(start_layer), int(end_layer), w=mixed_w, disp=False)
172
+
173
+
174
+ # Streamlit app title
175
+ st.title("FashionGen Demo - AI assisted fashion design")
176
+ """This application employs the StyleGAN framework, CLIP and GANSpace exploration techniques to synthesize images of garments from textual inputs. With training based on the comprehensive LookBook dataset, it supports an efficient fashion design process by transforming text into visual concepts, showcasing the practical application of Generative Adversarial Networks (GANs) in the realm of creative design."""
177
+
178
+ @st.cache_resource
179
+ def load_model():
180
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
181
+ # Load the pre-trained CLIP model
182
+ clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)
183
+ inst = get_instrumented_model(config.model, config.output_class,
184
+ config.layer, torch.device('cpu'), use_w=config.use_w)
185
+ return clip_model, inst
186
+
187
+ # Then, to load your models, call this function:
188
+ clip_model, inst = load_model()
189
+ model = inst.model
190
+
191
+
192
+ path_to_components = get_or_compute(config, inst)
193
+ comps = np.load(path_to_components)
194
+ lst = comps.files
195
+ latent_dirs = []
196
+ latent_stdevs = []
197
+
198
+ load_activations = False
199
+
200
+ for item in lst:
201
+ if load_activations:
202
+ if item == 'act_comp':
203
+ for i in range(comps[item].shape[0]):
204
+ latent_dirs.append(comps[item][i])
205
+ if item == 'act_stdev':
206
+ for i in range(comps[item].shape[0]):
207
+ latent_stdevs.append(comps[item][i])
208
+ else:
209
+ if item == 'lat_comp':
210
+ for i in range(comps[item].shape[0]):
211
+ latent_dirs.append(comps[item][i])
212
+ if item == 'lat_stdev':
213
+ for i in range(comps[item].shape[0]):
214
+ latent_stdevs.append(comps[item][i])
215
+
216
+ ## Side bar texts
217
+ st.sidebar.title('Tuning Parameters')
218
+ st.sidebar.subheader('(CLIP + GANSpace)')
219
+
220
+
221
+ # Create UI widgets
222
+
223
+ if 'seed1' not in st.session_state and 'seed2' not in st.session_state:
224
+ st.session_state['seed1'] = random.randint(1, 1000)
225
+ st.session_state['seed2'] = random.randint(1, 1000)
226
+ seed1 = st.sidebar.number_input("Seed 1", value= st.session_state['seed1'])
227
+ seed2 = st.sidebar.number_input("Seed 2", value= st.session_state['seed2'])
228
+ text1 = st.sidebar.text_input("Text Description 1")
229
+ text2 = st.sidebar.text_input("Text Description 2")
230
+ iters = st.sidebar.number_input("Iterations for CLIP Optimization", value = 25)
231
+ submit_button = st.sidebar.button("Submit")
232
+ content = st.sidebar.slider("Structural Composition", min_value=0.0, max_value=1.0, value=0.5)
233
+ style = st.sidebar.slider("Style", min_value=0.0, max_value=1.0, value=0.5)
234
+ truncation = st.sidebar.slider("Dimensional Scaling", min_value=0.0, max_value=1.0, value=0.5)
235
+
236
+ slider_min_val = -20
237
+ slider_max_val = 20
238
+ slider_step = 1
239
+
240
+ c0 = st.sidebar.slider("Sleeve Size Scaling", min_value=slider_min_val, max_value=slider_max_val, value=0)
241
+ c1 = st.sidebar.slider("Jacket Features", min_value=slider_min_val, max_value=slider_max_val, value=0)
242
+ c2 = st.sidebar.slider("Women's Overcoat", min_value=slider_min_val, max_value=slider_max_val, value=0)
243
+ c3 = st.sidebar.slider("Coat", min_value=slider_min_val, max_value=slider_max_val, value=0)
244
+ c4 = st.sidebar.slider("Graphic Elements", min_value=slider_min_val, max_value=slider_max_val, value=0)
245
+ c5 = st.sidebar.slider("Darker Color", min_value=slider_min_val, max_value=slider_max_val, value=0)
246
+ c6 = st.sidebar.slider("Modest Neckline", min_value=slider_min_val, max_value=slider_max_val, value=0)
247
+ start_layer = st.sidebar.number_input("Start Layer", value=0)
248
+ end_layer = st.sidebar.number_input("End Layer", value=14)
249
+
250
+
251
+
252
+ if submit_button: # Execute when the submit button is pressed
253
+ w1 = clip_optimized_latent(text1, seed1, iters)
254
+ st.session_state['w1-np'] = w1
255
+ w2 = clip_optimized_latent(text2, seed2, iters)
256
+ st.session_state['w2-np'] = w2
257
+
258
+ try:
259
+ input_im, output_im = generate_image(content, style, truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer,st.session_state['w1-np'],st.session_state['w2-np'])
260
+ st.image(input_im, caption="Input Image")
261
+ st.image(output_im, caption="Output Image")
262
+ except:
263
+ pass
264
+
265
+
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2023 prathmeshdahikar
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md CHANGED
@@ -1,13 +1,2 @@
1
- ---
2
- title: FashionGen
3
- emoji: 🦀
4
- colorFrom: indigo
5
- colorTo: indigo
6
- sdk: streamlit
7
- sdk_version: 1.19.0
8
- app_file: app.py
9
- pinned: false
10
- license: afl-3.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ # FashionGen
2
+ AI assisted fashion design
 
 
 
 
 
 
 
 
 
 
 
TkTorchWindow.py ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 Erik Härkönen. All rights reserved.
2
+ # This file is licensed to you under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License. You may obtain a copy
4
+ # of the License at http://www.apache.org/licenses/LICENSE-2.0
5
+
6
+ # Unless required by applicable law or agreed to in writing, software distributed under
7
+ # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS
8
+ # OF ANY KIND, either express or implied. See the License for the specific language
9
+ # governing permissions and limitations under the License.
10
+
11
+ import tkinter as tk
12
+ import numpy as np
13
+ import time
14
+ from contextlib import contextmanager
15
+ import pycuda.driver
16
+ from pycuda.gl import graphics_map_flags
17
+ from glumpy import gloo, gl
18
+ from pyopengltk import OpenGLFrame
19
+ import torch
20
+ from torch.autograd import Variable
21
+
22
+ # TkInter widget that can draw torch tensors directly from GPU memory
23
+
24
+ @contextmanager
25
+ def cuda_activate(img):
26
+ """Context manager simplifying use of pycuda.gl.RegisteredImage"""
27
+ mapping = img.map()
28
+ yield mapping.array(0,0)
29
+ mapping.unmap()
30
+
31
+ def create_shared_texture(w, h, c=4,
32
+ map_flags=graphics_map_flags.WRITE_DISCARD,
33
+ dtype=np.uint8):
34
+ """Create and return a Texture2D with gloo and pycuda views."""
35
+ tex = np.zeros((h,w,c), dtype).view(gloo.Texture2D)
36
+ tex.activate() # force gloo to create on GPU
37
+ tex.deactivate()
38
+ cuda_buffer = pycuda.gl.RegisteredImage(
39
+ int(tex.handle), tex.target, map_flags)
40
+ return tex, cuda_buffer
41
+
42
+ # Shape batch as square if possible
43
+ def get_grid_dims(B):
44
+ S = int(B**0.5 + 0.5)
45
+ while B % S != 0:
46
+ S -= 1
47
+ return (B // S, S)
48
+
49
+ def create_gl_texture(tensor_shape):
50
+ if len(tensor_shape) != 4:
51
+ raise RuntimeError('Please provide a tensor of shape NCHW')
52
+
53
+ N, C, H, W = tensor_shape
54
+
55
+ cols, rows = get_grid_dims(N)
56
+ tex, cuda_buffer = create_shared_texture(W*cols, H*rows, 4)
57
+
58
+ return tex, cuda_buffer
59
+
60
+ # Create window with OpenGL context
61
+ class TorchImageView(OpenGLFrame):
62
+ def __init__(self, root = None, show_fps=True, **kwargs):
63
+ self.root = root or tk.Tk()
64
+ self.width = kwargs.get('width', 512)
65
+ self.height = kwargs.get('height', 512)
66
+ self.show_fps = show_fps
67
+ self.pycuda_initialized = False
68
+ self.animate = 0 # disable internal main loop
69
+ OpenGLFrame.__init__(self, root, **kwargs)
70
+
71
+ # Called by pyopengltk.BaseOpenGLFrame
72
+ # when the frame goes onto the screen
73
+ def initgl(self):
74
+ if not self.pycuda_initialized:
75
+ self.setup_gl(self.width, self.height)
76
+ self.pycuda_initialized = True
77
+
78
+ """Initalize gl states when the frame is created"""
79
+ gl.glViewport(0, 0, self.width, self.height)
80
+ gl.glClearColor(0.0, 0.0, 0.0, 0.0)
81
+ self.dt_history = [1000/60]
82
+ self.t0 = time.time()
83
+ self.t_last = self.t0
84
+ self.nframes = 0
85
+
86
+ def setup_gl(self, width, height):
87
+ # setup pycuda and torch
88
+ import pycuda.gl.autoinit
89
+ import pycuda.gl
90
+
91
+ assert torch.cuda.is_available(), "PyTorch: CUDA is not available"
92
+ print('Using GPU {}'.format(torch.cuda.current_device()))
93
+
94
+ # Create tensor to be shared between GL and CUDA
95
+ # Always overwritten so no sharing is necessary
96
+ dummy = torch.cuda.FloatTensor((1))
97
+ dummy.uniform_()
98
+ dummy = Variable(dummy)
99
+
100
+ # Create a buffer with pycuda and gloo views, using tensor created above
101
+ self.tex, self.cuda_buffer = create_gl_texture((1, 3, width, height))
102
+
103
+ # create a shader to program to draw to the screen
104
+ vertex = """
105
+ uniform float scale;
106
+ attribute vec2 position;
107
+ attribute vec2 texcoord;
108
+ varying vec2 v_texcoord;
109
+ void main()
110
+ {
111
+ v_texcoord = texcoord;
112
+ gl_Position = vec4(scale*position, 0.0, 1.0);
113
+ } """
114
+ fragment = """
115
+ uniform sampler2D tex;
116
+ varying vec2 v_texcoord;
117
+ void main()
118
+ {
119
+ gl_FragColor = texture2D(tex, v_texcoord);
120
+ } """
121
+ # Build the program and corresponding buffers (with 4 vertices)
122
+ self.screen = gloo.Program(vertex, fragment, count=4)
123
+
124
+ # NDC coordinates: Texcoords: Vertex order,
125
+ # (-1, +1) (+1, +1) (0,0) (1,0) triangle strip:
126
+ # +-------+ +----+ 1----3
127
+ # | NDC | | | | / |
128
+ # | SPACE | | | | / |
129
+ # +-------+ +----+ 2----4
130
+ # (-1, -1) (+1, -1) (0,1) (1,1)
131
+
132
+ # Upload data to GPU
133
+ self.screen['position'] = [(-1,+1), (-1,-1), (+1,+1), (+1,-1)]
134
+ self.screen['texcoord'] = [(0,0), (0,1), (1,0), (1,1)]
135
+ self.screen['scale'] = 1.0
136
+ self.screen['tex'] = self.tex
137
+
138
+ # Don't call directly, use update() instead
139
+ def redraw(self):
140
+ t_now = time.time()
141
+ dt = t_now - self.t_last
142
+ self.t_last = t_now
143
+
144
+ self.dt_history = ([dt] + self.dt_history)[:50]
145
+ dt_mean = sum(self.dt_history) / len(self.dt_history)
146
+
147
+ if self.show_fps and self.nframes % 60 == 0:
148
+ self.master.title('FPS: {:.0f}'.format(1 / dt_mean))
149
+
150
+ def draw(self, img):
151
+ assert len(img.shape) == 4, "Please provide an NCHW image tensor"
152
+ assert img.device.type == "cuda", "Please provide a CUDA tensor"
153
+
154
+ if img.dtype.is_floating_point:
155
+ img = (255*img).byte()
156
+
157
+ # Tile images
158
+ N, C, H, W = img.shape
159
+
160
+ if N > 1:
161
+ cols, rows = get_grid_dims(N)
162
+ img = img.reshape(cols, rows, C, H, W)
163
+ img = img.permute(2, 1, 3, 0, 4) # [C, rows, H, cols, W]
164
+ img = img.reshape(1, C, rows*H, cols*W)
165
+
166
+ tensor = img.squeeze().permute(1, 2, 0).data # CHW => HWC
167
+ if C == 3:
168
+ tensor = torch.cat((tensor, tensor[:,:,0:1]),2) # add the alpha channel
169
+ tensor[:,:,3] = 1 # set alpha
170
+
171
+ tensor = tensor.contiguous()
172
+
173
+ tex_h, tex_w, _ = self.tex.shape
174
+ tensor_h, tensor_w, _ = tensor.shape
175
+
176
+ if (tex_h, tex_w) != (tensor_h, tensor_w):
177
+ print(f'Resizing texture to {tensor_w}*{tensor_h}')
178
+ self.tex, self.cuda_buffer = create_gl_texture((N, C, H, W)) # original shape
179
+ self.screen['tex'] = self.tex
180
+
181
+ # copy from torch into buffer
182
+ assert self.tex.nbytes == tensor.numel()*tensor.element_size(), "Tensor and texture shape mismatch!"
183
+ with cuda_activate(self.cuda_buffer) as ary:
184
+ cpy = pycuda.driver.Memcpy2D()
185
+ cpy.set_src_device(tensor.data_ptr())
186
+ cpy.set_dst_array(ary)
187
+ cpy.width_in_bytes = cpy.src_pitch = cpy.dst_pitch = self.tex.nbytes//tensor_h
188
+ cpy.height = tensor_h
189
+ cpy(aligned=False)
190
+ torch.cuda.synchronize()
191
+
192
+ # draw to screen
193
+ self.screen.draw(gl.GL_TRIANGLE_STRIP)
194
+
195
+ def update(self):
196
+ self.update_idletasks()
197
+ self.tkMakeCurrent()
198
+ self.redraw()
199
+ self.tkSwapBuffers()
200
+
201
+ # USAGE:
202
+ # root = tk.Tk()
203
+ # iv = TorchImageView(root, width=512, height=512)
204
+ # iv.pack(fill='both', expand=True)
205
+ # while True:
206
+ # iv.draw(nchw_tensor)
207
+ # root.update()
208
+ # iv.update()
bpe_simple_vocab_16e6.txt.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
3
+ size 1356917
cache/components/stylegan2-lookbook_style_ipca_c80_n300000_w.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80cde5f3476909d69649ebcb1f9872d0fd95cb1632770db1b7fb962608f905b8
3
+ size 312351
clip.py ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import hashlib
2
+ import os
3
+ import urllib
4
+ import warnings
5
+ from typing import Any, Union, List
6
+ from pkg_resources import packaging
7
+
8
+ import torch
9
+ from PIL import Image
10
+ from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
11
+ from tqdm import tqdm
12
+
13
+ from model_clip import build_model
14
+ from simple_tokenizer import SimpleTokenizer as _Tokenizer
15
+
16
+ try:
17
+ from torchvision.transforms import InterpolationMode
18
+ BICUBIC = InterpolationMode.BICUBIC
19
+ except ImportError:
20
+ BICUBIC = Image.BICUBIC
21
+
22
+
23
+ if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"):
24
+ warnings.warn("PyTorch version 1.7.1 or higher is recommended")
25
+
26
+
27
+ __all__ = ["available_models", "load", "tokenize"]
28
+ _tokenizer = _Tokenizer()
29
+
30
+ _MODELS = {
31
+ "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
32
+ "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
33
+ "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
34
+ "RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
35
+ "RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
36
+ "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
37
+ "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
38
+ "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
39
+ "ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
40
+ }
41
+
42
+
43
+ def _download(url: str, root: str):
44
+ os.makedirs(root, exist_ok=True)
45
+ filename = os.path.basename(url)
46
+
47
+ expected_sha256 = url.split("/")[-2]
48
+ download_target = os.path.join(root, filename)
49
+
50
+ if os.path.exists(download_target) and not os.path.isfile(download_target):
51
+ raise RuntimeError(f"{download_target} exists and is not a regular file")
52
+
53
+ if os.path.isfile(download_target):
54
+ if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
55
+ return download_target
56
+ else:
57
+ warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
58
+
59
+ with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
60
+ with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
61
+ while True:
62
+ buffer = source.read(8192)
63
+ if not buffer:
64
+ break
65
+
66
+ output.write(buffer)
67
+ loop.update(len(buffer))
68
+
69
+ if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
70
+ raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match")
71
+
72
+ return download_target
73
+
74
+
75
+ def _convert_image_to_rgb(image):
76
+ return image.convert("RGB")
77
+
78
+
79
+ def _transform(n_px):
80
+ return Compose([
81
+ Resize(n_px, interpolation=BICUBIC),
82
+ CenterCrop(n_px),
83
+ _convert_image_to_rgb,
84
+ ToTensor(),
85
+ Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
86
+ ])
87
+
88
+
89
+ def available_models() -> List[str]:
90
+ """Returns the names of available CLIP models"""
91
+ return list(_MODELS.keys())
92
+
93
+
94
+ def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None):
95
+ """Load a CLIP model
96
+
97
+ Parameters
98
+ ----------
99
+ name : str
100
+ A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
101
+
102
+ device : Union[str, torch.device]
103
+ The device to put the loaded model
104
+
105
+ jit : bool
106
+ Whether to load the optimized JIT model or more hackable non-JIT model (default).
107
+
108
+ download_root: str
109
+ path to download the model files; by default, it uses "~/.cache/clip"
110
+
111
+ Returns
112
+ -------
113
+ model : torch.nn.Module
114
+ The CLIP model
115
+
116
+ preprocess : Callable[[PIL.Image], torch.Tensor]
117
+ A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
118
+ """
119
+ if name in _MODELS:
120
+ model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip"))
121
+ elif os.path.isfile(name):
122
+ model_path = name
123
+ else:
124
+ raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
125
+
126
+ with open(model_path, 'rb') as opened_file:
127
+ try:
128
+ # loading JIT archive
129
+ model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval()
130
+ state_dict = None
131
+ except RuntimeError:
132
+ # loading saved state dict
133
+ if jit:
134
+ warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
135
+ jit = False
136
+ state_dict = torch.load(opened_file, map_location="cpu")
137
+
138
+ if not jit:
139
+ model = build_model(state_dict or model.state_dict()).to(device)
140
+ if str(device) == "cpu":
141
+ model.float()
142
+ return model, _transform(model.visual.input_resolution)
143
+
144
+ # patch the device names
145
+ device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
146
+ device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
147
+
148
+ def patch_device(module):
149
+ try:
150
+ graphs = [module.graph] if hasattr(module, "graph") else []
151
+ except RuntimeError:
152
+ graphs = []
153
+
154
+ if hasattr(module, "forward1"):
155
+ graphs.append(module.forward1.graph)
156
+
157
+ for graph in graphs:
158
+ for node in graph.findAllNodes("prim::Constant"):
159
+ if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
160
+ node.copyAttributes(device_node)
161
+
162
+ model.apply(patch_device)
163
+ patch_device(model.encode_image)
164
+ patch_device(model.encode_text)
165
+
166
+ # patch dtype to float32 on CPU
167
+ if str(device) == "cpu":
168
+ float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
169
+ float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
170
+ float_node = float_input.node()
171
+
172
+ def patch_float(module):
173
+ try:
174
+ graphs = [module.graph] if hasattr(module, "graph") else []
175
+ except RuntimeError:
176
+ graphs = []
177
+
178
+ if hasattr(module, "forward1"):
179
+ graphs.append(module.forward1.graph)
180
+
181
+ for graph in graphs:
182
+ for node in graph.findAllNodes("aten::to"):
183
+ inputs = list(node.inputs())
184
+ for i in [1, 2]: # dtype can be the second or third argument to aten::to()
185
+ if inputs[i].node()["value"] == 5:
186
+ inputs[i].node().copyAttributes(float_node)
187
+
188
+ model.apply(patch_float)
189
+ patch_float(model.encode_image)
190
+ patch_float(model.encode_text)
191
+
192
+ model.float()
193
+
194
+ return model, _transform(model.input_resolution.item())
195
+
196
+
197
+ def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> Union[torch.IntTensor, torch.LongTensor]:
198
+ """
199
+ Returns the tokenized representation of given input string(s)
200
+
201
+ Parameters
202
+ ----------
203
+ texts : Union[str, List[str]]
204
+ An input string or a list of input strings to tokenize
205
+
206
+ context_length : int
207
+ The context length to use; all CLIP models use 77 as the context length
208
+
209
+ truncate: bool
210
+ Whether to truncate the text in case its encoding is longer than the context length
211
+
212
+ Returns
213
+ -------
214
+ A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length].
215
+ We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long.
216
+ """
217
+ if isinstance(texts, str):
218
+ texts = [texts]
219
+
220
+ sot_token = _tokenizer.encoder["<|startoftext|>"]
221
+ eot_token = _tokenizer.encoder["<|endoftext|>"]
222
+ all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
223
+ if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"):
224
+ result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
225
+ else:
226
+ result = torch.zeros(len(all_tokens), context_length, dtype=torch.int)
227
+
228
+ for i, tokens in enumerate(all_tokens):
229
+ if len(tokens) > context_length:
230
+ if truncate:
231
+ tokens = tokens[:context_length]
232
+ tokens[-1] = eot_token
233
+ else:
234
+ raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
235
+ result[i, :len(tokens)] = torch.tensor(tokens)
236
+
237
+ return result
config.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 Erik Härkönen. All rights reserved.
2
+ # This file is licensed to you under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License. You may obtain a copy
4
+ # of the License at http://www.apache.org/licenses/LICENSE-2.0
5
+
6
+ # Unless required by applicable law or agreed to in writing, software distributed under
7
+ # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS
8
+ # OF ANY KIND, either express or implied. See the License for the specific language
9
+ # governing permissions and limitations under the License.
10
+
11
+ import sys
12
+ import argparse
13
+ import json
14
+ from copy import deepcopy
15
+
16
+ class Config:
17
+ def __init__(self, **kwargs):
18
+ self.from_args([]) # set all defaults
19
+ self.default_args = deepcopy(self.__dict__)
20
+ self.from_dict(kwargs) # override
21
+
22
+ def __str__(self):
23
+ custom = {}
24
+ default = {}
25
+
26
+ # Find non-default arguments
27
+ for k, v in self.__dict__.items():
28
+ if k == 'default_args':
29
+ continue
30
+
31
+ in_default = k in self.default_args
32
+ same_value = self.default_args.get(k) == v
33
+
34
+ if in_default and same_value:
35
+ default[k] = v
36
+ else:
37
+ custom[k] = v
38
+
39
+ config = {
40
+ 'custom': custom,
41
+ 'default': default
42
+ }
43
+
44
+ return json.dumps(config, indent=4)
45
+
46
+ def __repr__(self):
47
+ return self.__str__()
48
+
49
+ def from_dict(self, dictionary):
50
+ for k, v in dictionary.items():
51
+ setattr(self, k, v)
52
+ return self
53
+
54
+ def from_args(self, args=sys.argv[1:]):
55
+ parser = argparse.ArgumentParser(description='GAN component analysis config')
56
+ parser.add_argument('--model', dest='model', type=str, default='StyleGAN', help='The network to analyze') # StyleGAN, DCGAN, ProGAN, BigGAN-XYZ
57
+ parser.add_argument('--layer', dest='layer', type=str, default='g_mapping', help='The layer to analyze')
58
+ parser.add_argument('--class', dest='output_class', type=str, default=None, help='Output class to generate (BigGAN: Imagenet, ProGAN: LSUN)')
59
+ parser.add_argument('--est', dest='estimator', type=str, default='ipca', help='The algorithm to use [pca, fbpca, cupca, spca, ica]')
60
+ parser.add_argument('--sparsity', type=float, default=1.0, help='Sparsity parameter of SPCA')
61
+ parser.add_argument('--video', dest='make_video', action='store_true', help='Generate output videos (MP4s)')
62
+ parser.add_argument('--batch', dest='batch_mode', action='store_true', help="Don't open windows, instead save results to file")
63
+ parser.add_argument('-b', dest='batch_size', type=int, default=None, help='Minibatch size, leave empty for automatic detection')
64
+ parser.add_argument('-c', dest='components', type=int, default=80, help='Number of components to keep')
65
+ parser.add_argument('-n', type=int, default=300_000, help='Number of examples to use in decomposition')
66
+ parser.add_argument('--use_w', action='store_true', help='Use W latent space (StyleGAN(2))')
67
+ parser.add_argument('--sigma', type=float, default=2.0, help='Number of stdevs to walk in visualize.py')
68
+ parser.add_argument('--inputs', type=str, default=None, help='Path to directory with named components')
69
+ parser.add_argument('--seed', type=int, default=None, help='Seed used in decomposition')
70
+ args = parser.parse_args(args)
71
+
72
+ return self.from_dict(args.__dict__)
decomposition.py ADDED
@@ -0,0 +1,402 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 Erik Härkönen. All rights reserved.
2
+ # This file is licensed to you under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License. You may obtain a copy
4
+ # of the License at http://www.apache.org/licenses/LICENSE-2.0
5
+
6
+ # Unless required by applicable law or agreed to in writing, software distributed under
7
+ # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS
8
+ # OF ANY KIND, either express or implied. See the License for the specific language
9
+ # governing permissions and limitations under the License.
10
+
11
+ # Patch for broken CTRL+C handler
12
+ # https://github.com/ContinuumIO/anaconda-issues/issues/905
13
+ import os
14
+ os.environ['FOR_DISABLE_CONSOLE_CTRL_HANDLER'] = '1'
15
+
16
+ import numpy as np
17
+ import os
18
+ from pathlib import Path
19
+ import re
20
+ import sys
21
+ import datetime
22
+ import argparse
23
+ import torch
24
+ import json
25
+ from types import SimpleNamespace
26
+ import scipy
27
+ from scipy.cluster.vq import kmeans
28
+ from tqdm import trange
29
+ from netdissect.nethook import InstrumentedModel
30
+ from config import Config
31
+ from estimators import get_estimator
32
+ from models import get_instrumented_model
33
+
34
+ SEED_SAMPLING = 1
35
+ SEED_RANDOM_DIRS = 2
36
+ SEED_LINREG = 3
37
+ SEED_VISUALIZATION = 5
38
+
39
+ B = 20
40
+ n_clusters = 500
41
+
42
+ def get_random_dirs(components, dimensions):
43
+ gen = np.random.RandomState(seed=SEED_RANDOM_DIRS)
44
+ dirs = gen.normal(size=(components, dimensions))
45
+ dirs /= np.sqrt(np.sum(dirs**2, axis=1, keepdims=True))
46
+ return dirs.astype(np.float32)
47
+
48
+ # Compute maximum batch size for given VRAM and network
49
+ def get_max_batch_size(inst, device, layer_name=None):
50
+ inst.remove_edits()
51
+
52
+ # Reset statistics
53
+ torch.cuda.reset_max_memory_cached(device)
54
+ torch.cuda.reset_max_memory_allocated(device)
55
+ total_mem = torch.cuda.get_device_properties(device).total_memory
56
+
57
+ B_max = 20
58
+
59
+ # Measure actual usage
60
+ for i in range(2, B_max, 2):
61
+ z = inst.model.sample_latent(n_samples=i)
62
+ if layer_name:
63
+ inst.model.partial_forward(z, layer_name)
64
+ else:
65
+ inst.model.forward(z)
66
+
67
+ maxmem = torch.cuda.max_memory_allocated(device)
68
+ del z
69
+
70
+ if maxmem > 0.5*total_mem:
71
+ print('Batch size {:d}: memory usage {:.0f}MB'.format(i, maxmem / 1e6))
72
+ return i
73
+
74
+ return B_max
75
+
76
+ # Solve for directions in latent space that match PCs in activaiton space
77
+ def linreg_lstsq(comp_np, mean_np, stdev_np, inst, config):
78
+ print('Performing least squares regression', flush=True)
79
+
80
+ torch.manual_seed(SEED_LINREG)
81
+ np.random.seed(SEED_LINREG)
82
+
83
+ comp = torch.from_numpy(comp_np).float().to(inst.model.device)
84
+ mean = torch.from_numpy(mean_np).float().to(inst.model.device)
85
+ stdev = torch.from_numpy(stdev_np).float().to(inst.model.device)
86
+
87
+ n_samp = max(10_000, config.n) // B * B # make divisible
88
+ n_comp = comp.shape[0]
89
+ latent_dims = inst.model.get_latent_dims()
90
+
91
+ # We're looking for M s.t. M*P*G'(Z) = Z => M*A = Z
92
+ # Z = batch of latent vectors (n_samples x latent_dims)
93
+ # G'(Z) = batch of activations at intermediate layer
94
+ # A = P*G'(Z) = projected activations (n_samples x pca_coords)
95
+ # M = linear mapping (pca_coords x latent_dims)
96
+
97
+ # Minimization min_M ||MA - Z||_l2 rewritten as min_M.T ||A.T*M.T - Z.T||_l2
98
+ # to match format expected by pytorch.lstsq
99
+
100
+ # TODO: regression on pixel-space outputs? (using nonlinear optimizer)
101
+ # min_M lpips(G_full(MA), G_full(Z))
102
+
103
+ # Tensors to fill with data
104
+ # Dimensions other way around, so these are actually the transposes
105
+ A = np.zeros((n_samp, n_comp), dtype=np.float32)
106
+ Z = np.zeros((n_samp, latent_dims), dtype=np.float32)
107
+
108
+ # Project tensor X onto PCs, return coordinates
109
+ def project(X, comp):
110
+ N = X.shape[0]
111
+ K = comp.shape[0]
112
+ coords = torch.bmm(comp.expand([N]+[-1]*comp.ndim), X.view(N, -1, 1))
113
+ return coords.reshape(N, K)
114
+
115
+ for i in trange(n_samp // B, desc='Collecting samples', ascii=True):
116
+ z = inst.model.sample_latent(B)
117
+ inst.model.partial_forward(z, config.layer)
118
+ act = inst.retained_features()[config.layer].reshape(B, -1)
119
+
120
+ # Project onto basis
121
+ act = act - mean
122
+ coords = project(act, comp)
123
+ coords_scaled = coords / stdev
124
+
125
+ A[i*B:(i+1)*B] = coords_scaled.detach().cpu().numpy()
126
+ Z[i*B:(i+1)*B] = z.detach().cpu().numpy().reshape(B, -1)
127
+
128
+ # Solve least squares fit
129
+
130
+ # gelsd = divide-and-conquer SVD; good default
131
+ # gelsy = complete orthogonal factorization; sometimes faster
132
+ # gelss = SVD; slow but less memory hungry
133
+ M_t = scipy.linalg.lstsq(A, Z, lapack_driver='gelsd')[0] # torch.lstsq(Z, A)[0][:n_comp, :]
134
+
135
+ # Solution given by rows of M_t
136
+ Z_comp = M_t[:n_comp, :]
137
+ Z_mean = np.mean(Z, axis=0, keepdims=True)
138
+
139
+ return Z_comp, Z_mean
140
+
141
+ def regression(comp, mean, stdev, inst, config):
142
+ # Sanity check: verify orthonormality
143
+ M = np.dot(comp, comp.T)
144
+ if not np.allclose(M, np.identity(M.shape[0])):
145
+ det = np.linalg.det(M)
146
+ print(f'WARNING: Computed basis is not orthonormal (determinant={det})')
147
+
148
+ return linreg_lstsq(comp, mean, stdev, inst, config)
149
+
150
+ def compute(config, dump_name, instrumented_model):
151
+ global B
152
+
153
+ timestamp = lambda : datetime.datetime.now().strftime("%d.%m %H:%M")
154
+ print(f'[{timestamp()}] Computing', dump_name.name)
155
+
156
+ # Ensure reproducibility
157
+ torch.manual_seed(0) # also sets cuda seeds
158
+ np.random.seed(0)
159
+
160
+ # Speed up backend
161
+ torch.backends.cudnn.benchmark = True
162
+
163
+ has_gpu = torch.cuda.is_available()
164
+ device = torch.device('cuda' if has_gpu else 'cpu')
165
+ layer_key = config.layer
166
+
167
+ if instrumented_model is None:
168
+ inst = get_instrumented_model(config.model, config.output_class, layer_key, device)
169
+ model = inst.model
170
+ else:
171
+ print('Reusing InstrumentedModel instance')
172
+ inst = instrumented_model
173
+ model = inst.model
174
+ inst.remove_edits()
175
+ model.set_output_class(config.output_class)
176
+
177
+ # Regress back to w space
178
+ if config.use_w:
179
+ print('Using W latent space')
180
+ model.use_w()
181
+
182
+ inst.retain_layer(layer_key)
183
+ model.partial_forward(model.sample_latent(1), layer_key)
184
+ sample_shape = inst.retained_features()[layer_key].shape
185
+ sample_dims = np.prod(sample_shape)
186
+ print('Feature shape:', sample_shape)
187
+
188
+ input_shape = inst.model.get_latent_shape()
189
+ input_dims = inst.model.get_latent_dims()
190
+
191
+ config.components = min(config.components, sample_dims)
192
+ transformer = get_estimator(config.estimator, config.components, config.sparsity)
193
+
194
+ X = None
195
+ X_global_mean = None
196
+
197
+ # Figure out batch size if not provided
198
+ B = config.batch_size or get_max_batch_size(inst, device, layer_key)
199
+
200
+ # Divisible by B (ignored in output name)
201
+ N = config.n // B * B
202
+
203
+ # Compute maximum batch size based on RAM + pagefile budget
204
+ target_bytes = 20 * 1_000_000_000 # GB
205
+ feat_size_bytes = sample_dims * np.dtype('float64').itemsize
206
+ N_limit_RAM = np.floor_divide(target_bytes, feat_size_bytes)
207
+ if not transformer.batch_support and N > N_limit_RAM:
208
+ print('WARNING: estimator does not support batching, ' \
209
+ 'given config will use {:.1f} GB memory.'.format(feat_size_bytes / 1_000_000_000 * N))
210
+
211
+ # 32-bit LAPACK gets very unhappy about huge matrices (in linalg.svd)
212
+ if config.estimator == 'ica':
213
+ lapack_max_N = np.floor_divide(np.iinfo(np.int32).max // 4, sample_dims) # 4x extra buffer
214
+ if N > lapack_max_N:
215
+ raise RuntimeError(f'Matrices too large for ICA, please use N <= {lapack_max_N}')
216
+
217
+ print('B={}, N={}, dims={}, N/dims={:.1f}'.format(B, N, sample_dims, N/sample_dims), flush=True)
218
+
219
+ # Must not depend on chosen batch size (reproducibility)
220
+ NB = max(B, max(2_000, 3*config.components)) # ipca: as large as possible!
221
+
222
+ samples = None
223
+ if not transformer.batch_support:
224
+ samples = np.zeros((N + NB, sample_dims), dtype=np.float32)
225
+
226
+ torch.manual_seed(config.seed or SEED_SAMPLING)
227
+ np.random.seed(config.seed or SEED_SAMPLING)
228
+
229
+ # Use exactly the same latents regardless of batch size
230
+ # Store in main memory, since N might be huge (1M+)
231
+ # Run in batches, since sample_latent() might perform Z -> W mapping
232
+ n_lat = ((N + NB - 1) // B + 1) * B
233
+ latents = np.zeros((n_lat, *input_shape[1:]), dtype=np.float32)
234
+ with torch.no_grad():
235
+ for i in trange(n_lat // B, desc='Sampling latents'):
236
+ latents[i*B:(i+1)*B] = model.sample_latent(n_samples=B).cpu().numpy()
237
+
238
+ # Decomposition on non-Gaussian latent space
239
+ samples_are_latents = layer_key in ['g_mapping', 'style'] and inst.model.latent_space_name() == 'W'
240
+
241
+ canceled = False
242
+ try:
243
+ X = np.ones((NB, sample_dims), dtype=np.float32)
244
+ action = 'Fitting' if transformer.batch_support else 'Collecting'
245
+ for gi in trange(0, N, NB, desc=f'{action} batches (NB={NB})', ascii=True):
246
+ for mb in range(0, NB, B):
247
+ z = torch.from_numpy(latents[gi+mb:gi+mb+B]).to(device)
248
+
249
+ if samples_are_latents:
250
+ # Decomposition on latents directly (e.g. StyleGAN W)
251
+ batch = z.reshape((B, -1))
252
+ else:
253
+ # Decomposition on intermediate layer
254
+ with torch.no_grad():
255
+ model.partial_forward(z, layer_key)
256
+
257
+ # Permuted to place PCA dimensions last
258
+ batch = inst.retained_features()[layer_key].reshape((B, -1))
259
+
260
+ space_left = min(B, NB - mb)
261
+ X[mb:mb+space_left] = batch.cpu().numpy()[:space_left]
262
+
263
+ if transformer.batch_support:
264
+ if not transformer.fit_partial(X.reshape(-1, sample_dims)):
265
+ break
266
+ else:
267
+ samples[gi:gi+NB, :] = X.copy()
268
+ except KeyboardInterrupt:
269
+ if not transformer.batch_support:
270
+ sys.exit(1) # no progress yet
271
+
272
+ dump_name = dump_name.parent / dump_name.name.replace(f'n{N}', f'n{gi}')
273
+ print(f'Saving current state to "{dump_name.name}" before exiting')
274
+ canceled = True
275
+
276
+ if not transformer.batch_support:
277
+ X = samples # Use all samples
278
+ X_global_mean = X.mean(axis=0, keepdims=True, dtype=np.float32) # TODO: activations surely multi-modal...!
279
+ X -= X_global_mean
280
+
281
+ print(f'[{timestamp()}] Fitting whole batch')
282
+ t_start_fit = datetime.datetime.now()
283
+
284
+ transformer.fit(X)
285
+
286
+ print(f'[{timestamp()}] Done in {datetime.datetime.now() - t_start_fit}')
287
+ assert np.all(transformer.transformer.mean_ < 1e-3), 'Mean of normalized data should be zero'
288
+ else:
289
+ X_global_mean = transformer.transformer.mean_.reshape((1, sample_dims))
290
+ X = X.reshape(-1, sample_dims)
291
+ X -= X_global_mean
292
+
293
+ X_comp, X_stdev, X_var_ratio = transformer.get_components()
294
+
295
+ assert X_comp.shape[1] == sample_dims \
296
+ and X_comp.shape[0] == config.components \
297
+ and X_global_mean.shape[1] == sample_dims \
298
+ and X_stdev.shape[0] == config.components, 'Invalid shape'
299
+
300
+ # 'Activations' are really latents in a secondary latent space
301
+ if samples_are_latents:
302
+ Z_comp = X_comp
303
+ Z_global_mean = X_global_mean
304
+ else:
305
+ Z_comp, Z_global_mean = regression(X_comp, X_global_mean, X_stdev, inst, config)
306
+
307
+ # Normalize
308
+ Z_comp /= np.linalg.norm(Z_comp, axis=-1, keepdims=True)
309
+
310
+ # Random projections
311
+ # We expect these to explain much less of the variance
312
+ random_dirs = get_random_dirs(config.components, np.prod(sample_shape))
313
+ n_rand_samples = min(5000, X.shape[0])
314
+ X_view = X[:n_rand_samples, :].T
315
+ assert np.shares_memory(X_view, X), "Error: slice produced copy"
316
+ X_stdev_random = np.dot(random_dirs, X_view).std(axis=1)
317
+
318
+ # Inflate back to proper shapes (for easier broadcasting)
319
+ X_comp = X_comp.reshape(-1, *sample_shape)
320
+ X_global_mean = X_global_mean.reshape(sample_shape)
321
+ Z_comp = Z_comp.reshape(-1, *input_shape)
322
+ Z_global_mean = Z_global_mean.reshape(input_shape)
323
+
324
+ # Compute stdev in latent space if non-Gaussian
325
+ lat_stdev = np.ones_like(X_stdev)
326
+ if config.use_w:
327
+ samples = model.sample_latent(5000).reshape(5000, input_dims).detach().cpu().numpy()
328
+ coords = np.dot(Z_comp.reshape(-1, input_dims), samples.T)
329
+ lat_stdev = coords.std(axis=1)
330
+
331
+ os.makedirs(dump_name.parent, exist_ok=True)
332
+ np.savez_compressed(dump_name, **{
333
+ 'act_comp': X_comp.astype(np.float32),
334
+ 'act_mean': X_global_mean.astype(np.float32),
335
+ 'act_stdev': X_stdev.astype(np.float32),
336
+ 'lat_comp': Z_comp.astype(np.float32),
337
+ 'lat_mean': Z_global_mean.astype(np.float32),
338
+ 'lat_stdev': lat_stdev.astype(np.float32),
339
+ 'var_ratio': X_var_ratio.astype(np.float32),
340
+ 'random_stdevs': X_stdev_random.astype(np.float32),
341
+ })
342
+
343
+ if canceled:
344
+ sys.exit(1)
345
+
346
+ # Don't shutdown if passed as param
347
+ if instrumented_model is None:
348
+ inst.close()
349
+ del inst
350
+ del model
351
+
352
+ del X
353
+ del X_comp
354
+ del random_dirs
355
+ del batch
356
+ del samples
357
+ del latents
358
+ torch.cuda.empty_cache()
359
+
360
+ # Return cached results or commpute if needed
361
+ # Pass existing InstrumentedModel instance to reuse it
362
+ def get_or_compute(config, model=None, submit_config=None, force_recompute=False):
363
+ if submit_config is None:
364
+ wrkdir = str(Path(__file__).parent.resolve())
365
+ submit_config = SimpleNamespace(run_dir_root = wrkdir, run_dir = wrkdir)
366
+
367
+ # Called directly by run.py
368
+ return _compute(submit_config, config, model, force_recompute)
369
+
370
+ def _compute(submit_config, config, model=None, force_recompute=False):
371
+ basedir = Path(submit_config.run_dir)
372
+ outdir = basedir / 'out'
373
+
374
+ if config.n is None:
375
+ raise RuntimeError('Must specify number of samples with -n=XXX')
376
+
377
+ if model and not isinstance(model, InstrumentedModel):
378
+ raise RuntimeError('Passed model has to be wrapped in "InstrumentedModel"')
379
+
380
+ if config.use_w and not 'StyleGAN' in config.model:
381
+ raise RuntimeError(f'Cannot change latent space of non-StyleGAN model {config.model}')
382
+
383
+ transformer = get_estimator(config.estimator, config.components, config.sparsity)
384
+ dump_name = "{}-{}_{}_{}_n{}{}{}.npz".format(
385
+ config.model.lower(),
386
+ config.output_class.replace(' ', '_'),
387
+ config.layer.lower(),
388
+ transformer.get_param_str(),
389
+ config.n,
390
+ '_w' if config.use_w else '',
391
+ f'_seed{config.seed}' if config.seed else ''
392
+ )
393
+
394
+ dump_path = basedir / 'cache' / 'components' / dump_name
395
+
396
+ if not dump_path.is_file() or force_recompute:
397
+ print('Not cached')
398
+ t_start = datetime.datetime.now()
399
+ compute(config, dump_path, model)
400
+ print('Total time:', datetime.datetime.now() - t_start)
401
+
402
+ return dump_path
deps/windows/PyOpenGL-3.1.4-cp37-cp37m-win_amd64.whl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6ff6658d48c4c941bc230e9d46c8b6fe593de1c4c523f7b0b678a6a4f920a1e
3
+ size 2849264
deps/windows/glumpy-1.1.0-cp37-cp37m-win_amd64.whl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e8984115f12b78ea29196d5d34bdddbf080674c3b6c6673b3daa037b61812cb
3
+ size 1061208
deps/windows/pycuda-2019.1.2+cuda101-cp37-cp37m-win_amd64.whl ADDED
Binary file (361 kB). View file
 
deps/windows/triangle-20190115.3-cp37-cp37m-win_amd64.whl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d86a42322673b599a930384b2272b3c3bc666e1c75c994c12f4dd7065e5d44bc
3
+ size 1431810
environment.yml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: ganspace
2
+ channels:
3
+ - defaults
4
+ - conda-forge
5
+ - pytorch
6
+ dependencies:
7
+ - python=3.7
8
+ - pytorch::pytorch=1.3
9
+ - pytorch::torchvision
10
+ - cudatoolkit=10.1
11
+ - pillow=6.2
12
+ - ffmpeg
13
+ - tqdm
14
+ - scipy
15
+ - scikit-learn
16
+ - scikit-image
17
+ - boto3
18
+ - requests
19
+ - nltk
20
+ - pip
21
+ - pip:
22
+ - fbpca
23
+ - pyopengltk
24
+
25
+ # conda env update -f environment.yml --prune
estimators.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 Erik Härkönen. All rights reserved.
2
+ # This file is licensed to you under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License. You may obtain a copy
4
+ # of the License at http://www.apache.org/licenses/LICENSE-2.0
5
+
6
+ # Unless required by applicable law or agreed to in writing, software distributed under
7
+ # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS
8
+ # OF ANY KIND, either express or implied. See the License for the specific language
9
+ # governing permissions and limitations under the License.
10
+
11
+ from sklearn.decomposition import FastICA, PCA, IncrementalPCA, MiniBatchSparsePCA, SparsePCA, KernelPCA
12
+ import fbpca
13
+ import numpy as np
14
+ import itertools
15
+ from types import SimpleNamespace
16
+
17
+ # ICA
18
+ class ICAEstimator():
19
+ def __init__(self, n_components):
20
+ self.n_components = n_components
21
+ self.maxiter = 10000
22
+ self.whiten = True # ICA: whitening is essential, should not be skipped
23
+ self.transformer = FastICA(n_components, random_state=0, whiten=self.whiten, max_iter=self.maxiter)
24
+ self.batch_support = False
25
+ self.stdev = np.zeros((n_components,))
26
+ self.total_var = 0.0
27
+
28
+ def get_param_str(self):
29
+ return "ica_c{}{}".format(self.n_components, '_w' if self.whiten else '')
30
+
31
+ def fit(self, X):
32
+ self.transformer.fit(X)
33
+ if self.transformer.n_iter_ >= self.maxiter:
34
+ raise RuntimeError(f'FastICA did not converge (N={X.shape[0]}, it={self.maxiter})')
35
+
36
+ # Normalize components
37
+ self.transformer.components_ /= np.sqrt(np.sum(self.transformer.components_**2, axis=-1, keepdims=True))
38
+
39
+ # Save variance for later
40
+ self.total_var = X.var(axis=0).sum()
41
+
42
+ # Compute projected standard deviations
43
+ self.stdev = np.dot(self.transformer.components_, X.T).std(axis=1)
44
+
45
+ # Sort components based on explained variance
46
+ idx = np.argsort(self.stdev)[::-1]
47
+ self.stdev = self.stdev[idx]
48
+ self.transformer.components_[:] = self.transformer.components_[idx]
49
+
50
+ def get_components(self):
51
+ var_ratio = self.stdev**2 / self.total_var
52
+ return self.transformer.components_, self.stdev, var_ratio # ICA outputs are not normalized
53
+
54
+ # Incremental PCA
55
+ class IPCAEstimator():
56
+ def __init__(self, n_components):
57
+ self.n_components = n_components
58
+ self.whiten = False
59
+ self.transformer = IncrementalPCA(n_components, whiten=self.whiten, batch_size=max(100, 2*n_components))
60
+ self.batch_support = True
61
+
62
+ def get_param_str(self):
63
+ return "ipca_c{}{}".format(self.n_components, '_w' if self.whiten else '')
64
+
65
+ def fit(self, X):
66
+ self.transformer.fit(X)
67
+
68
+ def fit_partial(self, X):
69
+ try:
70
+ self.transformer.partial_fit(X)
71
+ self.transformer.n_samples_seen_ = \
72
+ self.transformer.n_samples_seen_.astype(np.int64) # avoid overflow
73
+ return True
74
+ except ValueError as e:
75
+ print(f'\nIPCA error:', e)
76
+ return False
77
+
78
+ def get_components(self):
79
+ stdev = np.sqrt(self.transformer.explained_variance_) # already sorted
80
+ var_ratio = self.transformer.explained_variance_ratio_
81
+ return self.transformer.components_, stdev, var_ratio # PCA outputs are normalized
82
+
83
+ # Standard PCA
84
+ class PCAEstimator():
85
+ def __init__(self, n_components):
86
+ self.n_components = n_components
87
+ self.solver = 'full'
88
+ self.transformer = PCA(n_components, svd_solver=self.solver)
89
+ self.batch_support = False
90
+
91
+ def get_param_str(self):
92
+ return f"pca-{self.solver}_c{self.n_components}"
93
+
94
+ def fit(self, X):
95
+ self.transformer.fit(X)
96
+
97
+ # Save variance for later
98
+ self.total_var = X.var(axis=0).sum()
99
+
100
+ # Compute projected standard deviations
101
+ self.stdev = np.dot(self.transformer.components_, X.T).std(axis=1)
102
+
103
+ # Sort components based on explained variance
104
+ idx = np.argsort(self.stdev)[::-1]
105
+ self.stdev = self.stdev[idx]
106
+ self.transformer.components_[:] = self.transformer.components_[idx]
107
+
108
+ # Check orthogonality
109
+ dotps = [np.dot(*self.transformer.components_[[i, j]])
110
+ for (i, j) in itertools.combinations(range(self.n_components), 2)]
111
+ if not np.allclose(dotps, 0, atol=1e-4):
112
+ print('IPCA components not orghogonal, max dot', np.abs(dotps).max())
113
+
114
+ self.transformer.mean_ = X.mean(axis=0, keepdims=True)
115
+
116
+ def get_components(self):
117
+ var_ratio = self.stdev**2 / self.total_var
118
+ return self.transformer.components_, self.stdev, var_ratio
119
+
120
+ # Facebook's PCA
121
+ # Good default choice: very fast and accurate.
122
+ # Very high sample counts won't fit into RAM,
123
+ # in which case IncrementalPCA must be used.
124
+ class FacebookPCAEstimator():
125
+ def __init__(self, n_components):
126
+ self.n_components = n_components
127
+ self.transformer = SimpleNamespace()
128
+ self.batch_support = False
129
+ self.n_iter = 2
130
+ self.l = 2*self.n_components
131
+
132
+ def get_param_str(self):
133
+ return "fbpca_c{}_it{}_l{}".format(self.n_components, self.n_iter, self.l)
134
+
135
+ def fit(self, X):
136
+ U, s, Va = fbpca.pca(X, k=self.n_components, n_iter=self.n_iter, raw=True, l=self.l)
137
+ self.transformer.components_ = Va
138
+
139
+ # Save variance for later
140
+ self.total_var = X.var(axis=0).sum()
141
+
142
+ # Compute projected standard deviations
143
+ self.stdev = np.dot(self.transformer.components_, X.T).std(axis=1)
144
+
145
+ # Sort components based on explained variance
146
+ idx = np.argsort(self.stdev)[::-1]
147
+ self.stdev = self.stdev[idx]
148
+ self.transformer.components_[:] = self.transformer.components_[idx]
149
+
150
+ # Check orthogonality
151
+ dotps = [np.dot(*self.transformer.components_[[i, j]])
152
+ for (i, j) in itertools.combinations(range(self.n_components), 2)]
153
+ if not np.allclose(dotps, 0, atol=1e-4):
154
+ print('FBPCA components not orghogonal, max dot', np.abs(dotps).max())
155
+
156
+ self.transformer.mean_ = X.mean(axis=0, keepdims=True)
157
+
158
+ def get_components(self):
159
+ var_ratio = self.stdev**2 / self.total_var
160
+ return self.transformer.components_, self.stdev, var_ratio
161
+
162
+ # Sparse PCA
163
+ # The algorithm is online along the features direction, not the samples direction
164
+ # => no partial_fit
165
+ class SPCAEstimator():
166
+ def __init__(self, n_components, alpha=10.0):
167
+ self.n_components = n_components
168
+ self.whiten = False
169
+ self.alpha = alpha # higher alpha => sparser components
170
+ #self.transformer = MiniBatchSparsePCA(n_components, alpha=alpha, n_iter=100,
171
+ # batch_size=max(20, n_components//5), random_state=0, normalize_components=True)
172
+ self.transformer = SparsePCA(n_components, alpha=alpha, ridge_alpha=0.01,
173
+ max_iter=100, random_state=0, n_jobs=-1, normalize_components=True) # TODO: warm start using PCA result?
174
+ self.batch_support = False # maybe through memmap and HDD-stored tensor
175
+ self.stdev = np.zeros((n_components,))
176
+ self.total_var = 0.0
177
+
178
+ def get_param_str(self):
179
+ return "spca_c{}_a{}{}".format(self.n_components, self.alpha, '_w' if self.whiten else '')
180
+
181
+ def fit(self, X):
182
+ self.transformer.fit(X)
183
+
184
+ # Save variance for later
185
+ self.total_var = X.var(axis=0).sum()
186
+
187
+ # Compute projected standard deviations
188
+ # NB: cannot simply project with dot product!
189
+ self.stdev = self.transformer.transform(X).std(axis=0) # X = (n_samples, n_features)
190
+
191
+ # Sort components based on explained variance
192
+ idx = np.argsort(self.stdev)[::-1]
193
+ self.stdev = self.stdev[idx]
194
+ self.transformer.components_[:] = self.transformer.components_[idx]
195
+
196
+ # Check orthogonality
197
+ dotps = [np.dot(*self.transformer.components_[[i, j]])
198
+ for (i, j) in itertools.combinations(range(self.n_components), 2)]
199
+ if not np.allclose(dotps, 0, atol=1e-4):
200
+ print('SPCA components not orghogonal, max dot', np.abs(dotps).max())
201
+
202
+ def get_components(self):
203
+ var_ratio = self.stdev**2 / self.total_var
204
+ return self.transformer.components_, self.stdev, var_ratio # SPCA outputs are normalized
205
+
206
+ def get_estimator(name, n_components, alpha):
207
+ if name == 'pca':
208
+ return PCAEstimator(n_components)
209
+ if name == 'ipca':
210
+ return IPCAEstimator(n_components)
211
+ elif name == 'fbpca':
212
+ return FacebookPCAEstimator(n_components)
213
+ elif name == 'ica':
214
+ return ICAEstimator(n_components)
215
+ elif name == 'spca':
216
+ return SPCAEstimator(n_components, alpha)
217
+ else:
218
+ raise RuntimeError('Unknown estimator')
interactive.py ADDED
@@ -0,0 +1,655 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 Erik Härkönen. All rights reserved.
2
+ # This file is licensed to you under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License. You may obtain a copy
4
+ # of the License at http://www.apache.org/licenses/LICENSE-2.0
5
+
6
+ # Unless required by applicable law or agreed to in writing, software distributed under
7
+ # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS
8
+ # OF ANY KIND, either express or implied. See the License for the specific language
9
+ # governing permissions and limitations under the License.
10
+
11
+ # An interactive glumpy (OpenGL) + tkinter viewer for interacting with principal components.
12
+ # Requires OpenGL and CUDA support for rendering.
13
+
14
+ import torch
15
+ import numpy as np
16
+ import tkinter as tk
17
+ from tkinter import ttk
18
+ from types import SimpleNamespace
19
+ import matplotlib.pyplot as plt
20
+ from pathlib import Path
21
+ from os import makedirs
22
+ from models import get_instrumented_model
23
+ from config import Config
24
+ from decomposition import get_or_compute
25
+ from torch.nn.functional import interpolate
26
+ from TkTorchWindow import TorchImageView
27
+ from functools import partial
28
+ from platform import system
29
+ from PIL import Image
30
+ from utils import pad_frames, prettify_name
31
+ import pickle
32
+
33
+ # For platform specific UI tweaks
34
+ is_windows = 'Windows' in system()
35
+ is_linux = 'Linux' in system()
36
+ is_mac = 'Darwin' in system()
37
+
38
+ # Read input parameters
39
+ args = Config().from_args()
40
+
41
+ # Don't bother without GPU
42
+ assert torch.cuda.is_available(), 'Interactive mode requires CUDA'
43
+
44
+ # Use syntax from paper
45
+ def get_edit_name(idx, s, e, name=None):
46
+ return 'E({comp}, {edit_range}){edit_name}'.format(
47
+ comp = idx,
48
+ edit_range = f'{s}-{e}' if e > s else s,
49
+ edit_name = f': {name}' if name else ''
50
+ )
51
+
52
+ # Load or compute PCA basis vectors
53
+ def load_components(class_name, inst):
54
+ global components, state, use_named_latents
55
+
56
+ config = args.from_dict({ 'output_class': class_name })
57
+ dump_name = get_or_compute(config, inst)
58
+ data = np.load(dump_name, allow_pickle=False)
59
+ X_comp = data['act_comp']
60
+ X_mean = data['act_mean']
61
+ X_stdev = data['act_stdev']
62
+ Z_comp = data['lat_comp']
63
+ Z_mean = data['lat_mean']
64
+ Z_stdev = data['lat_stdev']
65
+ random_stdev_act = np.mean(data['random_stdevs'])
66
+ n_comp = X_comp.shape[0]
67
+ data.close()
68
+
69
+ # Transfer to GPU
70
+ components = SimpleNamespace(
71
+ X_comp = torch.from_numpy(X_comp).cuda().float(),
72
+ X_mean = torch.from_numpy(X_mean).cuda().float(),
73
+ X_stdev = torch.from_numpy(X_stdev).cuda().float(),
74
+ Z_comp = torch.from_numpy(Z_comp).cuda().float(),
75
+ Z_stdev = torch.from_numpy(Z_stdev).cuda().float(),
76
+ Z_mean = torch.from_numpy(Z_mean).cuda().float(),
77
+ names = [f'Component {i}' for i in range(n_comp)],
78
+ latent_types = [model.latent_space_name()]*n_comp,
79
+ ranges = [(0, model.get_max_latents())]*n_comp,
80
+ )
81
+
82
+ state.component_class = class_name # invalidates cache
83
+ use_named_latents = False
84
+ print('Loaded components for', class_name, 'from', dump_name)
85
+
86
+ # Load previously exported named components from
87
+ # directory specified with '--inputs=path/to/comp'
88
+ def load_named_components(path, class_name):
89
+ global components, state, use_named_latents
90
+
91
+ import glob
92
+ matches = glob.glob(f'{path}/*.pkl')
93
+
94
+ selected = []
95
+ for dump_path in matches:
96
+ with open(dump_path, 'rb') as f:
97
+ data = pickle.load(f)
98
+ if data['model_name'] != model_name or data['output_class'] != class_name:
99
+ continue
100
+
101
+ if data['latent_space'] != model.latent_space_name():
102
+ print('Skipping', dump_path, '(wrong latent space)')
103
+ continue
104
+
105
+ selected.append(data)
106
+ print('Using', dump_path)
107
+
108
+ if len(selected) == 0:
109
+ raise RuntimeError('No valid components in given path.')
110
+
111
+ comp_dict = { k : [] for k in ['X_comp', 'Z_comp', 'X_stdev', 'Z_stdev', 'names', 'types', 'layer_names', 'ranges', 'latent_types'] }
112
+ components = SimpleNamespace(**comp_dict)
113
+
114
+ for d in selected:
115
+ s = d['edit_start']
116
+ e = d['edit_end']
117
+ title = get_edit_name(d['component_index'], s, e - 1, d['name']) # show inclusive
118
+ components.X_comp.append(torch.from_numpy(d['act_comp']).cuda())
119
+ components.Z_comp.append(torch.from_numpy(d['lat_comp']).cuda())
120
+ components.X_stdev.append(d['act_stdev'])
121
+ components.Z_stdev.append(d['lat_stdev'])
122
+ components.names.append(title)
123
+ components.types.append(d['edit_type'])
124
+ components.layer_names.append(d['decomposition']['layer']) # only for act
125
+ components.ranges.append((s, e))
126
+ components.latent_types.append(d['latent_space']) # W or Z
127
+
128
+ use_named_latents = True
129
+ print('Loaded named components')
130
+
131
+ def setup_model():
132
+ global model, inst, layer_name, model_name, feat_shape, args, class_name
133
+
134
+ model_name = args.model
135
+ layer_name = args.layer
136
+ class_name = args.output_class
137
+
138
+ # Speed up pytorch
139
+ torch.autograd.set_grad_enabled(False)
140
+ torch.backends.cudnn.benchmark = True
141
+
142
+ # Load model
143
+ inst = get_instrumented_model(model_name, class_name, layer_name, torch.device('cuda'), use_w=args.use_w)
144
+ model = inst.model
145
+
146
+ feat_shape = inst.feature_shape[layer_name]
147
+ sample_dims = np.prod(feat_shape)
148
+
149
+ # Initialize
150
+ if args.inputs:
151
+ load_named_components(args.inputs, class_name)
152
+ else:
153
+ load_components(class_name, inst)
154
+
155
+ # Project tensor 'X' onto orthonormal basis 'comp', return coordinates
156
+ def project_ortho(X, comp):
157
+ N = comp.shape[0]
158
+ coords = (comp.reshape(N, -1) * X.reshape(-1)).sum(dim=1)
159
+ return coords.reshape([N]+[1]*X.ndim)
160
+
161
+ def zero_sliders():
162
+ for v in ui_state.sliders:
163
+ v.set(0.0)
164
+
165
+ def reset_sliders(zero_on_failure=True):
166
+ global ui_state
167
+
168
+ mode = ui_state.mode.get()
169
+
170
+ # Not orthogonal: need to solve least-norm problem
171
+ # Not batch size 1: one set of sliders not enough
172
+ # Not principal components: unsupported format
173
+ is_ortho = not (mode == 'latent' and model.latent_space_name() == 'Z')
174
+ is_single = state.z.shape[0] == 1
175
+ is_pcs = not use_named_latents
176
+
177
+ state.lat_slider_offset = 0
178
+ state.act_slider_offset = 0
179
+
180
+ enabled = False
181
+ if not (enabled and is_ortho and is_single and is_pcs):
182
+ if zero_on_failure:
183
+ zero_sliders()
184
+ return
185
+
186
+ if mode == 'activation':
187
+ val = state.base_act
188
+ mean = components.X_mean
189
+ comp = components.X_comp
190
+ stdev = components.X_stdev
191
+ else:
192
+ val = state.z
193
+ mean = components.Z_mean
194
+ comp = components.Z_comp
195
+ stdev = components.Z_stdev
196
+
197
+ n_sliders = len(ui_state.sliders)
198
+ coords = project_ortho(val - mean, comp)
199
+ offset = torch.sum(coords[:n_sliders] * comp[:n_sliders], dim=0)
200
+ scaled_coords = (coords.view(-1) / stdev).detach().cpu().numpy()
201
+
202
+ # Part representable by sliders
203
+ if mode == 'activation':
204
+ state.act_slider_offset = offset
205
+ else:
206
+ state.lat_slider_offset = offset
207
+
208
+ for i in range(n_sliders):
209
+ ui_state.sliders[i].set(round(scaled_coords[i], ndigits=1))
210
+
211
+ def setup_ui():
212
+ global root, toolbar, ui_state, app, canvas
213
+
214
+ root = tk.Tk()
215
+ scale = 1.0
216
+ app = TorchImageView(root, width=int(scale*1024), height=int(scale*1024), show_fps=False)
217
+ app.pack(fill=tk.BOTH, expand=tk.YES)
218
+ root.protocol("WM_DELETE_WINDOW", shutdown)
219
+ root.title('GANspace')
220
+
221
+ toolbar = tk.Toplevel(root)
222
+ toolbar.protocol("WM_DELETE_WINDOW", shutdown)
223
+ toolbar.geometry("215x800+0+0")
224
+ toolbar.title('')
225
+
226
+ N_COMPONENTS = min(70, len(components.names))
227
+ ui_state = SimpleNamespace(
228
+ sliders = [tk.DoubleVar(value=0.0) for _ in range(N_COMPONENTS)],
229
+ scales = [],
230
+ truncation = tk.DoubleVar(value=0.9),
231
+ outclass = tk.StringVar(value=class_name),
232
+ random_seed = tk.StringVar(value='0'),
233
+ mode = tk.StringVar(value='latent'),
234
+ batch_size = tk.IntVar(value=1), # how many images to show in window
235
+ edit_layer_start = tk.IntVar(value=0),
236
+ edit_layer_end = tk.IntVar(value=model.get_max_latents() - 1),
237
+ slider_max_val = 10.0
238
+ )
239
+
240
+ # Z vs activation mode button
241
+ #tk.Radiobutton(toolbar, text=f"Latent ({model.latent_space_name()})", variable=ui_state.mode, command=reset_sliders, value='latent').pack(fill="x")
242
+ #tk.Radiobutton(toolbar, text="Activation", variable=ui_state.mode, command=reset_sliders, value='activation').pack(fill="x")
243
+
244
+ # Choose range where latents are modified
245
+ def set_min(val):
246
+ ui_state.edit_layer_start.set(min(int(val), ui_state.edit_layer_end.get()))
247
+ def set_max(val):
248
+ ui_state.edit_layer_end.set(max(int(val), ui_state.edit_layer_start.get()))
249
+ max_latent_idx = model.get_max_latents() - 1
250
+
251
+ if not use_named_latents:
252
+ slider_min = tk.Scale(toolbar, command=set_min, variable=ui_state.edit_layer_start,
253
+ label='Layer start', from_=0, to=max_latent_idx, orient=tk.HORIZONTAL).pack(fill="x")
254
+ slider_max = tk.Scale(toolbar, command=set_max, variable=ui_state.edit_layer_end,
255
+ label='Layer end', from_=0, to=max_latent_idx, orient=tk.HORIZONTAL).pack(fill="x")
256
+
257
+ # Scrollable list of components
258
+ outer_frame = tk.Frame(toolbar, borderwidth=2, relief=tk.SUNKEN)
259
+ canvas = tk.Canvas(outer_frame, highlightthickness=0, borderwidth=0)
260
+ frame = tk.Frame(canvas)
261
+ vsb = tk.Scrollbar(outer_frame, orient="vertical", command=canvas.yview)
262
+ canvas.configure(yscrollcommand=vsb.set)
263
+
264
+ vsb.pack(side="right", fill="y")
265
+ canvas.pack(side="left", fill="both", expand=True)
266
+ canvas.create_window((4,4), window=frame, anchor="nw")
267
+
268
+ def onCanvasConfigure(event):
269
+ canvas.itemconfigure("all", width=event.width)
270
+ canvas.configure(scrollregion=canvas.bbox("all"))
271
+ canvas.bind("<Configure>", onCanvasConfigure)
272
+
273
+ def on_scroll(event):
274
+ delta = 1 if (event.num == 5 or event.delta < 0) else -1
275
+ canvas.yview_scroll(delta, "units")
276
+
277
+ canvas.bind_all("<Button-4>", on_scroll)
278
+ canvas.bind_all("<Button-5>", on_scroll)
279
+ canvas.bind_all("<MouseWheel>", on_scroll)
280
+ canvas.bind_all("<Key>", lambda event : handle_keypress(event.keysym_num))
281
+
282
+ # Sliders and buttons
283
+ for i in range(N_COMPONENTS):
284
+ inner = tk.Frame(frame, borderwidth=1, background="#aaaaaa")
285
+ scale = tk.Scale(inner, variable=ui_state.sliders[i], from_=-ui_state.slider_max_val,
286
+ to=ui_state.slider_max_val, resolution=0.1, orient=tk.HORIZONTAL, label=components.names[i])
287
+ scale.pack(fill=tk.X, side=tk.LEFT, expand=True)
288
+ ui_state.scales.append(scale) # for changing label later
289
+ if not use_named_latents:
290
+ tk.Button(inner, text=f"Save", command=partial(export_direction, i, inner)).pack(fill=tk.Y, side=tk.RIGHT)
291
+ inner.pack(fill=tk.X)
292
+
293
+ outer_frame.pack(fill="both", expand=True, pady=0)
294
+
295
+ tk.Button(toolbar, text="Reset", command=reset_sliders).pack(anchor=tk.CENTER, fill=tk.X, padx=4, pady=4)
296
+
297
+ tk.Scale(toolbar, variable=ui_state.truncation, from_=0.01, to=1.0,
298
+ resolution=0.01, orient=tk.HORIZONTAL, label='Truncation').pack(fill="x")
299
+
300
+ tk.Scale(toolbar, variable=ui_state.batch_size, from_=1, to=9,
301
+ resolution=1, orient=tk.HORIZONTAL, label='Batch size').pack(fill="x")
302
+
303
+ # Output class
304
+ frame = tk.Frame(toolbar)
305
+ tk.Label(frame, text="Class name").pack(fill="x", side="left")
306
+ tk.Entry(frame, textvariable=ui_state.outclass).pack(fill="x", side="right", expand=True, padx=5)
307
+ frame.pack(fill=tk.X, pady=3)
308
+
309
+ # Random seed
310
+ def update_seed():
311
+ seed_str = ui_state.random_seed.get()
312
+ if seed_str.isdigit():
313
+ resample_latent(int(seed_str))
314
+ frame = tk.Frame(toolbar)
315
+ tk.Label(frame, text="Seed").pack(fill="x", side="left")
316
+ tk.Entry(frame, textvariable=ui_state.random_seed, width=12).pack(fill="x", side="left", expand=True, padx=2)
317
+ tk.Button(frame, text="Update", command=update_seed).pack(fill="y", side="right", padx=3)
318
+ frame.pack(fill=tk.X, pady=3)
319
+
320
+ # Get new latent or new components
321
+ tk.Button(toolbar, text="Resample latent", command=partial(resample_latent, None, False)).pack(anchor=tk.CENTER, fill=tk.X, padx=4, pady=4)
322
+ #tk.Button(toolbar, text="Recompute", command=recompute_components).pack(anchor=tk.CENTER, fill=tk.X)
323
+
324
+ # App state
325
+ state = SimpleNamespace(
326
+ z=None, # current latent(s)
327
+ lat_slider_offset = 0, # part of lat that is explained by sliders
328
+ act_slider_offset = 0, # part of act that is explained by sliders
329
+ component_class=None, # name of current PCs' image class
330
+ seed=0, # Latent z_i generated by seed+i
331
+ base_act = None, # activation of considered layer given z
332
+ )
333
+
334
+ def resample_latent(seed=None, only_style=False):
335
+ class_name = ui_state.outclass.get()
336
+ if class_name.isnumeric():
337
+ class_name = int(class_name)
338
+
339
+ if hasattr(model, 'is_valid_class'):
340
+ if not model.is_valid_class(class_name):
341
+ return
342
+
343
+ model.set_output_class(class_name)
344
+
345
+ B = ui_state.batch_size.get()
346
+ state.seed = np.random.randint(np.iinfo(np.int32).max - B) if seed is None else seed
347
+ ui_state.random_seed.set(str(state.seed))
348
+
349
+ # Use consecutive seeds along batch dimension (for easier reproducibility)
350
+ trunc = ui_state.truncation.get()
351
+ latents = [model.sample_latent(1, seed=state.seed + i, truncation=trunc) for i in range(B)]
352
+
353
+ state.z = torch.cat(latents).clone().detach() # make leaf node
354
+ assert state.z.is_leaf, 'Latent is not leaf node!'
355
+
356
+ if hasattr(model, 'truncation'):
357
+ model.truncation = ui_state.truncation.get()
358
+ print(f'Seeds: {state.seed} -> {state.seed + B - 1}' if B > 1 else f'Seed: {state.seed}')
359
+
360
+ torch.manual_seed(state.seed)
361
+ model.partial_forward(state.z, layer_name)
362
+ state.base_act = inst.retained_features()[layer_name]
363
+
364
+ reset_sliders(zero_on_failure=False)
365
+
366
+ # Remove focus from text entry
367
+ canvas.focus_set()
368
+
369
+ # Used to recompute after changing class of conditional model
370
+ def recompute_components():
371
+ class_name = ui_state.outclass.get()
372
+ if class_name.isnumeric():
373
+ class_name = int(class_name)
374
+
375
+ if hasattr(model, 'is_valid_class'):
376
+ if not model.is_valid_class(class_name):
377
+ return
378
+
379
+ if hasattr(model, 'set_output_class'):
380
+ model.set_output_class(class_name)
381
+
382
+ load_components(class_name, inst)
383
+
384
+ # Used to detect parameter changes for lazy recomputation
385
+ class ParamCache():
386
+ def update(self, **kwargs):
387
+ dirty = False
388
+ for argname, val in kwargs.items():
389
+ # Check pointer, then value
390
+ current = getattr(self, argname, 0)
391
+ if current is not val and pickle.dumps(current) != pickle.dumps(val):
392
+ setattr(self, argname, val)
393
+ dirty = True
394
+ return dirty
395
+
396
+ cache = ParamCache()
397
+
398
+ def l2norm(t):
399
+ return torch.norm(t.view(t.shape[0], -1), p=2, dim=1, keepdim=True)
400
+
401
+ def apply_edit(z0, delta):
402
+ return z0 + delta
403
+
404
+ def reposition_toolbar():
405
+ size, X, Y = root.winfo_geometry().split('+')
406
+ W, H = size.split('x')
407
+ toolbar_W = toolbar.winfo_geometry().split('x')[0]
408
+ offset_y = -30 if is_linux else 0 # window title bar
409
+ toolbar.geometry(f'{toolbar_W}x{H}+{int(X)-int(toolbar_W)}+{int(Y)+offset_y}')
410
+ toolbar.update()
411
+
412
+ def on_draw():
413
+ global img
414
+
415
+ n_comp = len(ui_state.sliders)
416
+ slider_vals = np.array([s.get() for s in ui_state.sliders], dtype=np.float32)
417
+
418
+ # Run model sparingly
419
+ mode = ui_state.mode.get()
420
+ latent_start = ui_state.edit_layer_start.get()
421
+ latent_end = ui_state.edit_layer_end.get() + 1 # save as exclusive, show as inclusive
422
+
423
+ if cache.update(coords=slider_vals, comp=state.component_class, mode=mode, z=state.z, s=latent_start, e=latent_end):
424
+ with torch.no_grad():
425
+ z_base = state.z - state.lat_slider_offset
426
+ z_deltas = [0.0]*model.get_max_latents()
427
+ z_delta_global = 0.0
428
+
429
+ n_comp = slider_vals.size
430
+ act_deltas = {}
431
+
432
+ if torch.is_tensor(state.act_slider_offset):
433
+ act_deltas[layer_name] = -state.act_slider_offset
434
+
435
+ for space in components.latent_types:
436
+ assert space == model.latent_space_name(), \
437
+ 'Cannot mix latent spaces (for now)'
438
+
439
+ for c in range(n_comp):
440
+ coord = slider_vals[c]
441
+ if coord == 0:
442
+ continue
443
+
444
+ edit_mode = components.types[c] if use_named_latents else mode
445
+
446
+ # Activation offset
447
+ if edit_mode in ['activation', 'both']:
448
+ delta = components.X_comp[c] * components.X_stdev[c] * coord
449
+ name = components.layer_names[c] if use_named_latents else layer_name
450
+ act_deltas[name] = act_deltas.get(name, 0.0) + delta
451
+
452
+ # Latent offset
453
+ if edit_mode in ['latent', 'both']:
454
+ delta = components.Z_comp[c] * components.Z_stdev[c] * coord
455
+ edit_range = components.ranges[c] if use_named_latents else (latent_start, latent_end)
456
+ full_range = (edit_range == (0, model.get_max_latents()))
457
+
458
+ # Single or multiple offsets?
459
+ if full_range:
460
+ z_delta_global = z_delta_global + delta
461
+ else:
462
+ for l in range(*edit_range):
463
+ z_deltas[l] = z_deltas[l] + delta
464
+
465
+ # Apply activation deltas
466
+ inst.remove_edits()
467
+ for layer, delta in act_deltas.items():
468
+ inst.edit_layer(layer, offset=delta)
469
+
470
+ # Evaluate
471
+ has_offsets = any(torch.is_tensor(t) for t in z_deltas)
472
+ z_final = apply_edit(z_base, z_delta_global)
473
+ if has_offsets:
474
+ z_final = [apply_edit(z_final, d) for d in z_deltas]
475
+ img = model.forward(z_final).clamp(0.0, 1.0)
476
+
477
+ app.draw(img)
478
+
479
+ # Save necessary data to disk for later loading
480
+ def export_direction(idx, button_frame):
481
+ name = tk.StringVar(value='')
482
+ num_strips = tk.IntVar(value=0)
483
+ strip_width = tk.IntVar(value=5)
484
+
485
+ slider_values = np.array([s.get() for s in ui_state.sliders])
486
+ slider_value = slider_values[idx]
487
+ if (slider_values != 0).sum() > 1:
488
+ print('Please modify only one slider')
489
+ return
490
+ elif slider_value == 0:
491
+ print('Modify selected slider to set usable range (currently 0)')
492
+ return
493
+
494
+ popup = tk.Toplevel(root)
495
+ popup.geometry("200x200+0+0")
496
+ tk.Label(popup, text="Edit name").pack()
497
+ tk.Entry(popup, textvariable=name).pack(pady=5)
498
+ # tk.Scale(popup, from_=0, to=30, variable=num_strips,
499
+ # resolution=1, orient=tk.HORIZONTAL, length=200, label='Image strips to export').pack()
500
+ # tk.Scale(popup, from_=3, to=15, variable=strip_width,
501
+ # resolution=1, orient=tk.HORIZONTAL, length=200, label='Image strip width').pack()
502
+ tk.Button(popup, text='OK', command=popup.quit).pack()
503
+
504
+ canceled = False
505
+ def on_close():
506
+ nonlocal canceled
507
+ canceled = True
508
+ popup.quit()
509
+
510
+ popup.protocol("WM_DELETE_WINDOW", on_close)
511
+ x = button_frame.winfo_rootx()
512
+ y = button_frame.winfo_rooty()
513
+ w = int(button_frame.winfo_geometry().split('x')[0])
514
+ popup.geometry('%dx%d+%d+%d' % (180, 90, x + w, y))
515
+ popup.mainloop()
516
+ popup.destroy()
517
+
518
+ # Update slider name
519
+ label = get_edit_name(idx, ui_state.edit_layer_start.get(),
520
+ ui_state.edit_layer_end.get(), name.get())
521
+ ui_state.scales[idx].config(label=label)
522
+
523
+ if canceled:
524
+ return
525
+
526
+ params = {
527
+ 'name': name.get(),
528
+ 'sigma_range': slider_value,
529
+ 'component_index': idx,
530
+ 'act_comp': components.X_comp[idx].detach().cpu().numpy(),
531
+ 'lat_comp': components.Z_comp[idx].detach().cpu().numpy(), # either Z or W
532
+ 'latent_space': model.latent_space_name(),
533
+ 'act_stdev': components.X_stdev[idx].item(),
534
+ 'lat_stdev': components.Z_stdev[idx].item(),
535
+ 'model_name': model_name,
536
+ 'output_class': ui_state.outclass.get(), # applied onto
537
+ 'decomposition': {
538
+ 'name': args.estimator,
539
+ 'components': args.components,
540
+ 'samples': args.n,
541
+ 'layer': args.layer,
542
+ 'class_name': state.component_class # computed from
543
+ },
544
+ 'edit_type': ui_state.mode.get(),
545
+ 'truncation': ui_state.truncation.get(),
546
+ 'edit_start': ui_state.edit_layer_start.get(),
547
+ 'edit_end': ui_state.edit_layer_end.get() + 1, # show as inclusive, save as exclusive
548
+ 'example_seed': state.seed,
549
+ }
550
+
551
+ edit_mode_str = params['edit_type']
552
+ if edit_mode_str == 'latent':
553
+ edit_mode_str = model.latent_space_name().lower()
554
+
555
+ comp_class = state.component_class
556
+ appl_class = params['output_class']
557
+ if comp_class != appl_class:
558
+ comp_class = f'{comp_class}_onto_{appl_class}'
559
+
560
+ file_ident = "{model}-{name}-{cls}-{est}-{mode}-{layer}-comp{idx}-range{start}-{end}".format(
561
+ model=model_name,
562
+ name=prettify_name(params['name']),
563
+ cls=comp_class,
564
+ est=args.estimator,
565
+ mode=edit_mode_str,
566
+ layer=args.layer,
567
+ idx=idx,
568
+ start=params['edit_start'],
569
+ end=params['edit_end'],
570
+ )
571
+
572
+ out_dir = Path(__file__).parent / 'out' / 'directions'
573
+ makedirs(out_dir / file_ident, exist_ok=True)
574
+
575
+ with open(out_dir / f"{file_ident}.pkl", 'wb') as outfile:
576
+ pickle.dump(params, outfile)
577
+
578
+ print(f'Direction "{name.get()}" saved as "{file_ident}.pkl"')
579
+
580
+ batch_size = ui_state.batch_size.get()
581
+ len_padded = ((num_strips.get() - 1) // batch_size + 1) * batch_size
582
+ orig_seed = state.seed
583
+
584
+ reset_sliders()
585
+
586
+ # Limit max resolution
587
+ max_H = 512
588
+ ratio = min(1.0, max_H / inst.output_shape[2])
589
+
590
+ strips = [[] for _ in range(len_padded)]
591
+ for b in range(0, len_padded, batch_size):
592
+ # Resample
593
+ resample_latent((orig_seed + b) % np.iinfo(np.int32).max)
594
+
595
+ sigmas = np.linspace(slider_value, -slider_value, strip_width.get(), dtype=np.float32)
596
+ for sid, sigma in enumerate(sigmas):
597
+ ui_state.sliders[idx].set(sigma)
598
+
599
+ # Advance and show results on screen
600
+ on_draw()
601
+ root.update()
602
+ app.update()
603
+
604
+ batch_res = (255*img).byte().permute(0, 2, 3, 1).detach().cpu().numpy()
605
+
606
+ for i, data in enumerate(batch_res):
607
+ # Save individual
608
+ name_nodots = file_ident.replace('.', '_')
609
+ outname = out_dir / file_ident / f"{name_nodots}_ex{b+i}_{sid}.png"
610
+ im = Image.fromarray(data)
611
+ im = im.resize((int(ratio*im.size[0]), int(ratio*im.size[1])), Image.ANTIALIAS)
612
+ im.save(outname)
613
+ strips[b+i].append(data)
614
+
615
+ for i, strip in enumerate(strips[:num_strips.get()]):
616
+ print(f'Saving strip {i + 1}/{num_strips.get()}', end='\r', flush=True)
617
+ data = np.hstack(pad_frames(strip))
618
+ im = Image.fromarray(data)
619
+ im = im.resize((int(ratio*im.size[0]), int(ratio*im.size[1])), Image.ANTIALIAS)
620
+ im.save(out_dir / file_ident / f"{file_ident}_ex{i}.png")
621
+
622
+ # Reset to original state
623
+ resample_latent(orig_seed)
624
+ ui_state.sliders[idx].set(slider_value)
625
+
626
+
627
+ # Shared by glumpy and tkinter
628
+ def handle_keypress(code):
629
+ if code == 65307: # ESC
630
+ shutdown()
631
+ elif code == 65360: # HOME
632
+ reset_sliders()
633
+ elif code == 114: # R
634
+ pass #reset_sliders()
635
+
636
+ def shutdown():
637
+ global pending_close
638
+ pending_close = True
639
+
640
+ def on_key_release(symbol, modifiers):
641
+ handle_keypress(symbol)
642
+
643
+ if __name__=='__main__':
644
+ setup_model()
645
+ setup_ui()
646
+ resample_latent()
647
+
648
+ pending_close = False
649
+ while not pending_close:
650
+ root.update()
651
+ app.update()
652
+ on_draw()
653
+ reposition_toolbar()
654
+
655
+ root.destroy()
model_clip.py ADDED
@@ -0,0 +1,436 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import OrderedDict
2
+ from typing import Tuple, Union
3
+
4
+ import numpy as np
5
+ import torch
6
+ import torch.nn.functional as F
7
+ from torch import nn
8
+
9
+
10
+ class Bottleneck(nn.Module):
11
+ expansion = 4
12
+
13
+ def __init__(self, inplanes, planes, stride=1):
14
+ super().__init__()
15
+
16
+ # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
17
+ self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
18
+ self.bn1 = nn.BatchNorm2d(planes)
19
+ self.relu1 = nn.ReLU(inplace=True)
20
+
21
+ self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
22
+ self.bn2 = nn.BatchNorm2d(planes)
23
+ self.relu2 = nn.ReLU(inplace=True)
24
+
25
+ self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
26
+
27
+ self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
28
+ self.bn3 = nn.BatchNorm2d(planes * self.expansion)
29
+ self.relu3 = nn.ReLU(inplace=True)
30
+
31
+ self.downsample = None
32
+ self.stride = stride
33
+
34
+ if stride > 1 or inplanes != planes * Bottleneck.expansion:
35
+ # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
36
+ self.downsample = nn.Sequential(OrderedDict([
37
+ ("-1", nn.AvgPool2d(stride)),
38
+ ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
39
+ ("1", nn.BatchNorm2d(planes * self.expansion))
40
+ ]))
41
+
42
+ def forward(self, x: torch.Tensor):
43
+ identity = x
44
+
45
+ out = self.relu1(self.bn1(self.conv1(x)))
46
+ out = self.relu2(self.bn2(self.conv2(out)))
47
+ out = self.avgpool(out)
48
+ out = self.bn3(self.conv3(out))
49
+
50
+ if self.downsample is not None:
51
+ identity = self.downsample(x)
52
+
53
+ out += identity
54
+ out = self.relu3(out)
55
+ return out
56
+
57
+
58
+ class AttentionPool2d(nn.Module):
59
+ def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
60
+ super().__init__()
61
+ self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
62
+ self.k_proj = nn.Linear(embed_dim, embed_dim)
63
+ self.q_proj = nn.Linear(embed_dim, embed_dim)
64
+ self.v_proj = nn.Linear(embed_dim, embed_dim)
65
+ self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
66
+ self.num_heads = num_heads
67
+
68
+ def forward(self, x):
69
+ x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC
70
+ x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
71
+ x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
72
+ x, _ = F.multi_head_attention_forward(
73
+ query=x[:1], key=x, value=x,
74
+ embed_dim_to_check=x.shape[-1],
75
+ num_heads=self.num_heads,
76
+ q_proj_weight=self.q_proj.weight,
77
+ k_proj_weight=self.k_proj.weight,
78
+ v_proj_weight=self.v_proj.weight,
79
+ in_proj_weight=None,
80
+ in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
81
+ bias_k=None,
82
+ bias_v=None,
83
+ add_zero_attn=False,
84
+ dropout_p=0,
85
+ out_proj_weight=self.c_proj.weight,
86
+ out_proj_bias=self.c_proj.bias,
87
+ use_separate_proj_weight=True,
88
+ training=self.training,
89
+ need_weights=False
90
+ )
91
+ return x.squeeze(0)
92
+
93
+
94
+ class ModifiedResNet(nn.Module):
95
+ """
96
+ A ResNet class that is similar to torchvision's but contains the following changes:
97
+ - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
98
+ - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
99
+ - The final pooling layer is a QKV attention instead of an average pool
100
+ """
101
+
102
+ def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
103
+ super().__init__()
104
+ self.output_dim = output_dim
105
+ self.input_resolution = input_resolution
106
+
107
+ # the 3-layer stem
108
+ self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
109
+ self.bn1 = nn.BatchNorm2d(width // 2)
110
+ self.relu1 = nn.ReLU(inplace=True)
111
+ self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
112
+ self.bn2 = nn.BatchNorm2d(width // 2)
113
+ self.relu2 = nn.ReLU(inplace=True)
114
+ self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
115
+ self.bn3 = nn.BatchNorm2d(width)
116
+ self.relu3 = nn.ReLU(inplace=True)
117
+ self.avgpool = nn.AvgPool2d(2)
118
+
119
+ # residual layers
120
+ self._inplanes = width # this is a *mutable* variable used during construction
121
+ self.layer1 = self._make_layer(width, layers[0])
122
+ self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
123
+ self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
124
+ self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
125
+
126
+ embed_dim = width * 32 # the ResNet feature dimension
127
+ self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
128
+
129
+ def _make_layer(self, planes, blocks, stride=1):
130
+ layers = [Bottleneck(self._inplanes, planes, stride)]
131
+
132
+ self._inplanes = planes * Bottleneck.expansion
133
+ for _ in range(1, blocks):
134
+ layers.append(Bottleneck(self._inplanes, planes))
135
+
136
+ return nn.Sequential(*layers)
137
+
138
+ def forward(self, x):
139
+ def stem(x):
140
+ x = self.relu1(self.bn1(self.conv1(x)))
141
+ x = self.relu2(self.bn2(self.conv2(x)))
142
+ x = self.relu3(self.bn3(self.conv3(x)))
143
+ x = self.avgpool(x)
144
+ return x
145
+
146
+ x = x.type(self.conv1.weight.dtype)
147
+ x = stem(x)
148
+ x = self.layer1(x)
149
+ x = self.layer2(x)
150
+ x = self.layer3(x)
151
+ x = self.layer4(x)
152
+ x = self.attnpool(x)
153
+
154
+ return x
155
+
156
+
157
+ class LayerNorm(nn.LayerNorm):
158
+ """Subclass torch's LayerNorm to handle fp16."""
159
+
160
+ def forward(self, x: torch.Tensor):
161
+ orig_type = x.dtype
162
+ ret = super().forward(x.type(torch.float32))
163
+ return ret.type(orig_type)
164
+
165
+
166
+ class QuickGELU(nn.Module):
167
+ def forward(self, x: torch.Tensor):
168
+ return x * torch.sigmoid(1.702 * x)
169
+
170
+
171
+ class ResidualAttentionBlock(nn.Module):
172
+ def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
173
+ super().__init__()
174
+
175
+ self.attn = nn.MultiheadAttention(d_model, n_head)
176
+ self.ln_1 = LayerNorm(d_model)
177
+ self.mlp = nn.Sequential(OrderedDict([
178
+ ("c_fc", nn.Linear(d_model, d_model * 4)),
179
+ ("gelu", QuickGELU()),
180
+ ("c_proj", nn.Linear(d_model * 4, d_model))
181
+ ]))
182
+ self.ln_2 = LayerNorm(d_model)
183
+ self.attn_mask = attn_mask
184
+
185
+ def attention(self, x: torch.Tensor):
186
+ self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
187
+ return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
188
+
189
+ def forward(self, x: torch.Tensor):
190
+ x = x + self.attention(self.ln_1(x))
191
+ x = x + self.mlp(self.ln_2(x))
192
+ return x
193
+
194
+
195
+ class Transformer(nn.Module):
196
+ def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
197
+ super().__init__()
198
+ self.width = width
199
+ self.layers = layers
200
+ self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
201
+
202
+ def forward(self, x: torch.Tensor):
203
+ return self.resblocks(x)
204
+
205
+
206
+ class VisionTransformer(nn.Module):
207
+ def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
208
+ super().__init__()
209
+ self.input_resolution = input_resolution
210
+ self.output_dim = output_dim
211
+ self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
212
+
213
+ scale = width ** -0.5
214
+ self.class_embedding = nn.Parameter(scale * torch.randn(width))
215
+ self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
216
+ self.ln_pre = LayerNorm(width)
217
+
218
+ self.transformer = Transformer(width, layers, heads)
219
+
220
+ self.ln_post = LayerNorm(width)
221
+ self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
222
+
223
+ def forward(self, x: torch.Tensor):
224
+ x = self.conv1(x) # shape = [*, width, grid, grid]
225
+ x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
226
+ x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
227
+ x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
228
+ x = x + self.positional_embedding.to(x.dtype)
229
+ x = self.ln_pre(x)
230
+
231
+ x = x.permute(1, 0, 2) # NLD -> LND
232
+ x = self.transformer(x)
233
+ x = x.permute(1, 0, 2) # LND -> NLD
234
+
235
+ x = self.ln_post(x[:, 0, :])
236
+
237
+ if self.proj is not None:
238
+ x = x @ self.proj
239
+
240
+ return x
241
+
242
+
243
+ class CLIP(nn.Module):
244
+ def __init__(self,
245
+ embed_dim: int,
246
+ # vision
247
+ image_resolution: int,
248
+ vision_layers: Union[Tuple[int, int, int, int], int],
249
+ vision_width: int,
250
+ vision_patch_size: int,
251
+ # text
252
+ context_length: int,
253
+ vocab_size: int,
254
+ transformer_width: int,
255
+ transformer_heads: int,
256
+ transformer_layers: int
257
+ ):
258
+ super().__init__()
259
+
260
+ self.context_length = context_length
261
+
262
+ if isinstance(vision_layers, (tuple, list)):
263
+ vision_heads = vision_width * 32 // 64
264
+ self.visual = ModifiedResNet(
265
+ layers=vision_layers,
266
+ output_dim=embed_dim,
267
+ heads=vision_heads,
268
+ input_resolution=image_resolution,
269
+ width=vision_width
270
+ )
271
+ else:
272
+ vision_heads = vision_width // 64
273
+ self.visual = VisionTransformer(
274
+ input_resolution=image_resolution,
275
+ patch_size=vision_patch_size,
276
+ width=vision_width,
277
+ layers=vision_layers,
278
+ heads=vision_heads,
279
+ output_dim=embed_dim
280
+ )
281
+
282
+ self.transformer = Transformer(
283
+ width=transformer_width,
284
+ layers=transformer_layers,
285
+ heads=transformer_heads,
286
+ attn_mask=self.build_attention_mask()
287
+ )
288
+
289
+ self.vocab_size = vocab_size
290
+ self.token_embedding = nn.Embedding(vocab_size, transformer_width)
291
+ self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
292
+ self.ln_final = LayerNorm(transformer_width)
293
+
294
+ self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
295
+ self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
296
+
297
+ self.initialize_parameters()
298
+
299
+ def initialize_parameters(self):
300
+ nn.init.normal_(self.token_embedding.weight, std=0.02)
301
+ nn.init.normal_(self.positional_embedding, std=0.01)
302
+
303
+ if isinstance(self.visual, ModifiedResNet):
304
+ if self.visual.attnpool is not None:
305
+ std = self.visual.attnpool.c_proj.in_features ** -0.5
306
+ nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
307
+ nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
308
+ nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
309
+ nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
310
+
311
+ for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
312
+ for name, param in resnet_block.named_parameters():
313
+ if name.endswith("bn3.weight"):
314
+ nn.init.zeros_(param)
315
+
316
+ proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
317
+ attn_std = self.transformer.width ** -0.5
318
+ fc_std = (2 * self.transformer.width) ** -0.5
319
+ for block in self.transformer.resblocks:
320
+ nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
321
+ nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
322
+ nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
323
+ nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
324
+
325
+ if self.text_projection is not None:
326
+ nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
327
+
328
+ def build_attention_mask(self):
329
+ # lazily create causal attention mask, with full attention between the vision tokens
330
+ # pytorch uses additive attention mask; fill with -inf
331
+ mask = torch.empty(self.context_length, self.context_length)
332
+ mask.fill_(float("-inf"))
333
+ mask.triu_(1) # zero out the lower diagonal
334
+ return mask
335
+
336
+ @property
337
+ def dtype(self):
338
+ return self.visual.conv1.weight.dtype
339
+
340
+ def encode_image(self, image):
341
+ return self.visual(image.type(self.dtype))
342
+
343
+ def encode_text(self, text):
344
+ x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
345
+
346
+ x = x + self.positional_embedding.type(self.dtype)
347
+ x = x.permute(1, 0, 2) # NLD -> LND
348
+ x = self.transformer(x)
349
+ x = x.permute(1, 0, 2) # LND -> NLD
350
+ x = self.ln_final(x).type(self.dtype)
351
+
352
+ # x.shape = [batch_size, n_ctx, transformer.width]
353
+ # take features from the eot embedding (eot_token is the highest number in each sequence)
354
+ x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
355
+
356
+ return x
357
+
358
+ def forward(self, image, text):
359
+ image_features = self.encode_image(image)
360
+ text_features = self.encode_text(text)
361
+
362
+ # normalized features
363
+ image_features = image_features / image_features.norm(dim=1, keepdim=True)
364
+ text_features = text_features / text_features.norm(dim=1, keepdim=True)
365
+
366
+ # cosine similarity as logits
367
+ logit_scale = self.logit_scale.exp()
368
+ logits_per_image = logit_scale * image_features @ text_features.t()
369
+ logits_per_text = logits_per_image.t()
370
+
371
+ # shape = [global_batch_size, global_batch_size]
372
+ return logits_per_image, logits_per_text
373
+
374
+
375
+ def convert_weights(model: nn.Module):
376
+ """Convert applicable model parameters to fp16"""
377
+
378
+ def _convert_weights_to_fp16(l):
379
+ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
380
+ l.weight.data = l.weight.data.half()
381
+ if l.bias is not None:
382
+ l.bias.data = l.bias.data.half()
383
+
384
+ if isinstance(l, nn.MultiheadAttention):
385
+ for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
386
+ tensor = getattr(l, attr)
387
+ if tensor is not None:
388
+ tensor.data = tensor.data.half()
389
+
390
+ for name in ["text_projection", "proj"]:
391
+ if hasattr(l, name):
392
+ attr = getattr(l, name)
393
+ if attr is not None:
394
+ attr.data = attr.data.half()
395
+
396
+ model.apply(_convert_weights_to_fp16)
397
+
398
+
399
+ def build_model(state_dict: dict):
400
+ vit = "visual.proj" in state_dict
401
+
402
+ if vit:
403
+ vision_width = state_dict["visual.conv1.weight"].shape[0]
404
+ vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
405
+ vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
406
+ grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
407
+ image_resolution = vision_patch_size * grid_size
408
+ else:
409
+ counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
410
+ vision_layers = tuple(counts)
411
+ vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
412
+ output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
413
+ vision_patch_size = None
414
+ assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
415
+ image_resolution = output_width * 32
416
+
417
+ embed_dim = state_dict["text_projection"].shape[1]
418
+ context_length = state_dict["positional_embedding"].shape[0]
419
+ vocab_size = state_dict["token_embedding.weight"].shape[0]
420
+ transformer_width = state_dict["ln_final.weight"].shape[0]
421
+ transformer_heads = transformer_width // 64
422
+ transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks")))
423
+
424
+ model = CLIP(
425
+ embed_dim,
426
+ image_resolution, vision_layers, vision_width, vision_patch_size,
427
+ context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
428
+ )
429
+
430
+ for key in ["input_resolution", "context_length", "vocab_size"]:
431
+ if key in state_dict:
432
+ del state_dict[key]
433
+
434
+ convert_weights(model)
435
+ model.load_state_dict(state_dict)
436
+ return model.eval()
models/__init__.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 Erik Härkönen. All rights reserved.
2
+ # This file is licensed to you under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License. You may obtain a copy
4
+ # of the License at http://www.apache.org/licenses/LICENSE-2.0
5
+
6
+ # Unless required by applicable law or agreed to in writing, software distributed under
7
+ # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS
8
+ # OF ANY KIND, either express or implied. See the License for the specific language
9
+ # governing permissions and limitations under the License.
10
+
11
+ from .wrappers import *
models/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (188 Bytes). View file
 
models/__pycache__/wrappers.cpython-310.pyc ADDED
Binary file (24.3 kB). View file
 
models/biggan/__init__.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ import sys
3
+
4
+ module_path = Path(__file__).parent / 'pytorch_biggan'
5
+ sys.path.append(str(module_path.resolve()))
6
+ from pytorch_pretrained_biggan import *
7
+ from pytorch_pretrained_biggan.model import GenBlock
8
+ from pytorch_pretrained_biggan.file_utils import http_get, s3_get
models/biggan/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (526 Bytes). View file
 
models/biggan/pytorch_biggan/.gitignore ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ *.egg-info/
24
+ .installed.cfg
25
+ *.egg
26
+ MANIFEST
27
+
28
+ # PyInstaller
29
+ # Usually these files are written by a python script from a template
30
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
31
+ *.manifest
32
+ *.spec
33
+
34
+ # Installer logs
35
+ pip-log.txt
36
+ pip-delete-this-directory.txt
37
+
38
+ # Unit test / coverage reports
39
+ htmlcov/
40
+ .tox/
41
+ .coverage
42
+ .coverage.*
43
+ .cache
44
+ nosetests.xml
45
+ coverage.xml
46
+ *.cover
47
+ .hypothesis/
48
+ .pytest_cache/
49
+
50
+ # Translations
51
+ *.mo
52
+ *.pot
53
+
54
+ # Django stuff:
55
+ *.log
56
+ local_settings.py
57
+ db.sqlite3
58
+
59
+ # Flask stuff:
60
+ instance/
61
+ .webassets-cache
62
+
63
+ # Scrapy stuff:
64
+ .scrapy
65
+
66
+ # Sphinx documentation
67
+ docs/_build/
68
+
69
+ # PyBuilder
70
+ target/
71
+
72
+ # Jupyter Notebook
73
+ .ipynb_checkpoints
74
+
75
+ # pyenv
76
+ .python-version
77
+
78
+ # celery beat schedule file
79
+ celerybeat-schedule
80
+
81
+ # SageMath parsed files
82
+ *.sage.py
83
+
84
+ # Environments
85
+ .env
86
+ .venv
87
+ env/
88
+ venv/
89
+ ENV/
90
+ env.bak/
91
+ venv.bak/
92
+
93
+ # Spyder project settings
94
+ .spyderproject
95
+ .spyproject
96
+
97
+ # Rope project settings
98
+ .ropeproject
99
+
100
+ # mkdocs documentation
101
+ /site
102
+
103
+ # mypy
104
+ .mypy_cache/
105
+
106
+ # vscode
107
+ .vscode/
108
+
109
+ # models
110
+ models/
models/biggan/pytorch_biggan/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2020 Erik Härkönen
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
models/biggan/pytorch_biggan/MANIFEST.in ADDED
@@ -0,0 +1 @@
 
 
1
+ include LICENSE
models/biggan/pytorch_biggan/README.md ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # BigStyleGAN
2
+ This is a copy of HuggingFace's BigGAN implementation, with the addition of layerwise latent inputs.
3
+
4
+ # PyTorch pretrained BigGAN
5
+ An op-for-op PyTorch reimplementation of DeepMind's BigGAN model with the pre-trained weights from DeepMind.
6
+
7
+ ## Introduction
8
+
9
+ This repository contains an op-for-op PyTorch reimplementation of DeepMind's BigGAN that was released with the paper [Large Scale GAN Training for High Fidelity Natural Image Synthesis](https://openreview.net/forum?id=B1xsqj09Fm) by Andrew Brock, Jeff Donahue and Karen Simonyan.
10
+
11
+ This PyTorch implementation of BigGAN is provided with the [pretrained 128x128, 256x256 and 512x512 models by DeepMind](https://tfhub.dev/deepmind/biggan-deep-128/1). We also provide the scripts used to download and convert these models from the TensorFlow Hub models.
12
+
13
+ This reimplementation was done from the raw computation graph of the Tensorflow version and behave similarly to the TensorFlow version (variance of the output difference of the order of 1e-5).
14
+
15
+ This implementation currently only contains the generator as the weights of the discriminator were not released (although the structure of the discriminator is very similar to the generator so it could be added pretty easily. Tell me if you want to do a PR on that, I would be happy to help.)
16
+
17
+ ## Installation
18
+
19
+ This repo was tested on Python 3.6 and PyTorch 1.0.1
20
+
21
+ PyTorch pretrained BigGAN can be installed from pip as follows:
22
+ ```bash
23
+ pip install pytorch-pretrained-biggan
24
+ ```
25
+
26
+ If you simply want to play with the GAN this should be enough.
27
+
28
+ If you want to use the conversion scripts and the imagenet utilities, additional requirements are needed, in particular TensorFlow and NLTK. To install all the requirements please use the `full_requirements.txt` file:
29
+ ```bash
30
+ git clone https://github.com/huggingface/pytorch-pretrained-BigGAN.git
31
+ cd pytorch-pretrained-BigGAN
32
+ pip install -r full_requirements.txt
33
+ ```
34
+
35
+ ## Models
36
+
37
+ This repository provide direct and simple access to the pretrained "deep" versions of BigGAN for 128, 256 and 512 pixels resolutions as described in the [associated publication](https://openreview.net/forum?id=B1xsqj09Fm).
38
+ Here are some details on the models:
39
+
40
+ - `BigGAN-deep-128`: a 50.4M parameters model generating 128x128 pixels images, the model dump weights 201 MB,
41
+ - `BigGAN-deep-256`: a 55.9M parameters model generating 256x256 pixels images, the model dump weights 224 MB,
42
+ - `BigGAN-deep-512`: a 56.2M parameters model generating 512x512 pixels images, the model dump weights 225 MB.
43
+
44
+ Please refer to Appendix B of the paper for details on the architectures.
45
+
46
+ All models comprise pre-computed batch norm statistics for 51 truncation values between 0 and 1 (see Appendix C.1 in the paper for details).
47
+
48
+ ## Usage
49
+
50
+ Here is a quick-start example using `BigGAN` with a pre-trained model.
51
+
52
+ See the [doc section](#doc) below for details on these classes and methods.
53
+
54
+ ```python
55
+ import torch
56
+ from pytorch_pretrained_biggan import (BigGAN, one_hot_from_names, truncated_noise_sample,
57
+ save_as_images, display_in_terminal)
58
+
59
+ # OPTIONAL: if you want to have more information on what's happening, activate the logger as follows
60
+ import logging
61
+ logging.basicConfig(level=logging.INFO)
62
+
63
+ # Load pre-trained model tokenizer (vocabulary)
64
+ model = BigGAN.from_pretrained('biggan-deep-256')
65
+
66
+ # Prepare a input
67
+ truncation = 0.4
68
+ class_vector = one_hot_from_names(['soap bubble', 'coffee', 'mushroom'], batch_size=3)
69
+ noise_vector = truncated_noise_sample(truncation=truncation, batch_size=3)
70
+
71
+ # All in tensors
72
+ noise_vector = torch.from_numpy(noise_vector)
73
+ class_vector = torch.from_numpy(class_vector)
74
+
75
+ # If you have a GPU, put everything on cuda
76
+ noise_vector = noise_vector.to('cuda')
77
+ class_vector = class_vector.to('cuda')
78
+ model.to('cuda')
79
+
80
+ # Generate an image
81
+ with torch.no_grad():
82
+ output = model(noise_vector, class_vector, truncation)
83
+
84
+ # If you have a GPU put back on CPU
85
+ output = output.to('cpu')
86
+
87
+ # If you have a sixtel compatible terminal you can display the images in the terminal
88
+ # (see https://github.com/saitoha/libsixel for details)
89
+ display_in_terminal(output)
90
+
91
+ # Save results as png images
92
+ save_as_images(output)
93
+ ```
94
+
95
+ ![output_0](assets/output_0.png)
96
+ ![output_1](assets/output_1.png)
97
+ ![output_2](assets/output_2.png)
98
+
99
+ ## Doc
100
+
101
+ ### Loading DeepMind's pre-trained weights
102
+
103
+ To load one of DeepMind's pre-trained models, instantiate a `BigGAN` model with `from_pretrained()` as:
104
+
105
+ ```python
106
+ model = BigGAN.from_pretrained(PRE_TRAINED_MODEL_NAME_OR_PATH, cache_dir=None)
107
+ ```
108
+
109
+ where
110
+
111
+ - `PRE_TRAINED_MODEL_NAME_OR_PATH` is either:
112
+
113
+ - the shortcut name of a Google AI's or OpenAI's pre-trained model selected in the list:
114
+
115
+ - `biggan-deep-128`: 12-layer, 768-hidden, 12-heads, 110M parameters
116
+ - `biggan-deep-256`: 24-layer, 1024-hidden, 16-heads, 340M parameters
117
+ - `biggan-deep-512`: 12-layer, 768-hidden, 12-heads , 110M parameters
118
+
119
+ - a path or url to a pretrained model archive containing:
120
+
121
+ - `config.json`: a configuration file for the model, and
122
+ - `pytorch_model.bin` a PyTorch dump of a pre-trained instance of `BigGAN` (saved with the usual `torch.save()`).
123
+
124
+ If `PRE_TRAINED_MODEL_NAME_OR_PATH` is a shortcut name, the pre-trained weights will be downloaded from AWS S3 (see the links [here](pytorch_pretrained_biggan/model.py)) and stored in a cache folder to avoid future download (the cache folder can be found at `~/.pytorch_pretrained_biggan/`).
125
+ - `cache_dir` can be an optional path to a specific directory to download and cache the pre-trained model weights.
126
+
127
+ ### Configuration
128
+
129
+ `BigGANConfig` is a class to store and load BigGAN configurations. It's defined in [`config.py`](./pytorch_pretrained_biggan/config.py).
130
+
131
+ Here are some details on the attributes:
132
+
133
+ - `output_dim`: output resolution of the GAN (128, 256 or 512) for the pre-trained models,
134
+ - `z_dim`: size of the noise vector (128 for the pre-trained models).
135
+ - `class_embed_dim`: size of the class embedding vectors (128 for the pre-trained models).
136
+ - `channel_width`: size of each channel (128 for the pre-trained models).
137
+ - `num_classes`: number of classes in the training dataset, like imagenet (1000 for the pre-trained models).
138
+ - `layers`: A list of layers definition. Each definition for a layer is a triple of [up-sample in the layer ? (bool), number of input channels (int), number of output channels (int)]
139
+ - `attention_layer_position`: Position of the self-attention layer in the layer hierarchy (8 for the pre-trained models).
140
+ - `eps`: epsilon value to use for spectral and batch normalization layers (1e-4 for the pre-trained models).
141
+ - `n_stats`: number of pre-computed statistics for the batch normalization layers associated to various truncation values between 0 and 1 (51 for the pre-trained models).
142
+
143
+ ### Model
144
+
145
+ `BigGAN` is a PyTorch model (`torch.nn.Module`) of BigGAN defined in [`model.py`](./pytorch_pretrained_biggan/model.py). This model comprises the class embeddings (a linear layer) and the generator with a series of convolutions and conditional batch norms. The discriminator is currently not implemented since pre-trained weights have not been released for it.
146
+
147
+ The inputs and output are **identical to the TensorFlow model inputs and outputs**.
148
+
149
+ We detail them here.
150
+
151
+ `BigGAN` takes as *inputs*:
152
+
153
+ - `z`: a torch.FloatTensor of shape [batch_size, config.z_dim] with noise sampled from a truncated normal distribution, and
154
+ - `class_label`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
155
+ - `truncation`: a float between 0 (not comprised) and 1. The truncation of the truncated normal used for creating the noise vector. This truncation value is used to selecte between a set of pre-computed statistics (means and variances) for the batch norm layers.
156
+
157
+ `BigGAN` *outputs* an array of shape [batch_size, 3, resolution, resolution] where resolution is 128, 256 or 512 depending of the model:
158
+
159
+ ### Utilities: Images, Noise, Imagenet classes
160
+
161
+ We provide a few utility method to use the model. They are defined in [`utils.py`](./pytorch_pretrained_biggan/utils.py).
162
+
163
+ Here are some details on these methods:
164
+
165
+ - `truncated_noise_sample(batch_size=1, dim_z=128, truncation=1., seed=None)`:
166
+
167
+ Create a truncated noise vector.
168
+ - Params:
169
+ - batch_size: batch size.
170
+ - dim_z: dimension of z
171
+ - truncation: truncation value to use
172
+ - seed: seed for the random generator
173
+ - Output:
174
+ array of shape (batch_size, dim_z)
175
+
176
+ - `convert_to_images(obj)`:
177
+
178
+ Convert an output tensor from BigGAN in a list of images.
179
+ - Params:
180
+ - obj: tensor or numpy array of shape (batch_size, channels, height, width)
181
+ - Output:
182
+ - list of Pillow Images of size (height, width)
183
+
184
+ - `save_as_images(obj, file_name='output')`:
185
+
186
+ Convert and save an output tensor from BigGAN in a list of saved images.
187
+ - Params:
188
+ - obj: tensor or numpy array of shape (batch_size, channels, height, width)
189
+ - file_name: path and beggingin of filename to save.
190
+ Images will be saved as `file_name_{image_number}.png`
191
+
192
+ - `display_in_terminal(obj)`:
193
+
194
+ Convert and display an output tensor from BigGAN in the terminal. This function use `libsixel` and will only work in a libsixel-compatible terminal. Please refer to https://github.com/saitoha/libsixel for more details.
195
+ - Params:
196
+ - obj: tensor or numpy array of shape (batch_size, channels, height, width)
197
+ - file_name: path and beggingin of filename to save.
198
+ Images will be saved as `file_name_{image_number}.png`
199
+
200
+ - `one_hot_from_int(int_or_list, batch_size=1)`:
201
+
202
+ Create a one-hot vector from a class index or a list of class indices.
203
+ - Params:
204
+ - int_or_list: int, or list of int, of the imagenet classes (between 0 and 999)
205
+ - batch_size: batch size.
206
+ - If int_or_list is an int create a batch of identical classes.
207
+ - If int_or_list is a list, we should have `len(int_or_list) == batch_size`
208
+ - Output:
209
+ - array of shape (batch_size, 1000)
210
+
211
+ - `one_hot_from_names(class_name, batch_size=1)`:
212
+
213
+ Create a one-hot vector from the name of an imagenet class ('tennis ball', 'daisy', ...). We use NLTK's wordnet search to try to find the relevant synset of ImageNet and take the first one. If we can't find it direcly, we look at the hyponyms and hypernyms of the class name.
214
+ - Params:
215
+ - class_name: string containing the name of an imagenet object.
216
+ - Output:
217
+ - array of shape (batch_size, 1000)
218
+
219
+ ## Download and conversion scripts
220
+
221
+ Scripts to download and convert the TensorFlow models from TensorFlow Hub are provided in [./scripts](./scripts/).
222
+
223
+ The scripts can be used directly as:
224
+ ```bash
225
+ ./scripts/download_tf_hub_models.sh
226
+ ./scripts/convert_tf_hub_models.sh
227
+ ```
models/biggan/pytorch_biggan/assets/output_0.png ADDED
models/biggan/pytorch_biggan/assets/output_1.png ADDED
models/biggan/pytorch_biggan/assets/output_2.png ADDED
models/biggan/pytorch_biggan/full_requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ tensorflow
2
+ tensorflow-hub
3
+ Pillow
4
+ nltk
5
+ libsixel-python
models/biggan/pytorch_biggan/pytorch_pretrained_biggan/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ from .config import BigGANConfig
2
+ from .model import BigGAN
3
+ from .file_utils import PYTORCH_PRETRAINED_BIGGAN_CACHE, cached_path
4
+ from .utils import (truncated_noise_sample, save_as_images,
5
+ convert_to_images, display_in_terminal,
6
+ one_hot_from_int, one_hot_from_names)
models/biggan/pytorch_biggan/pytorch_pretrained_biggan/config.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+ """
3
+ BigGAN config.
4
+ """
5
+ from __future__ import (absolute_import, division, print_function, unicode_literals)
6
+
7
+ import copy
8
+ import json
9
+
10
+ class BigGANConfig(object):
11
+ """ Configuration class to store the configuration of a `BigGAN`.
12
+ Defaults are for the 128x128 model.
13
+ layers tuple are (up-sample in the layer ?, input channels, output channels)
14
+ """
15
+ def __init__(self,
16
+ output_dim=128,
17
+ z_dim=128,
18
+ class_embed_dim=128,
19
+ channel_width=128,
20
+ num_classes=1000,
21
+ layers=[(False, 16, 16),
22
+ (True, 16, 16),
23
+ (False, 16, 16),
24
+ (True, 16, 8),
25
+ (False, 8, 8),
26
+ (True, 8, 4),
27
+ (False, 4, 4),
28
+ (True, 4, 2),
29
+ (False, 2, 2),
30
+ (True, 2, 1)],
31
+ attention_layer_position=8,
32
+ eps=1e-4,
33
+ n_stats=51):
34
+ """Constructs BigGANConfig. """
35
+ self.output_dim = output_dim
36
+ self.z_dim = z_dim
37
+ self.class_embed_dim = class_embed_dim
38
+ self.channel_width = channel_width
39
+ self.num_classes = num_classes
40
+ self.layers = layers
41
+ self.attention_layer_position = attention_layer_position
42
+ self.eps = eps
43
+ self.n_stats = n_stats
44
+
45
+ @classmethod
46
+ def from_dict(cls, json_object):
47
+ """Constructs a `BigGANConfig` from a Python dictionary of parameters."""
48
+ config = BigGANConfig()
49
+ for key, value in json_object.items():
50
+ config.__dict__[key] = value
51
+ return config
52
+
53
+ @classmethod
54
+ def from_json_file(cls, json_file):
55
+ """Constructs a `BigGANConfig` from a json file of parameters."""
56
+ with open(json_file, "r", encoding='utf-8') as reader:
57
+ text = reader.read()
58
+ return cls.from_dict(json.loads(text))
59
+
60
+ def __repr__(self):
61
+ return str(self.to_json_string())
62
+
63
+ def to_dict(self):
64
+ """Serializes this instance to a Python dictionary."""
65
+ output = copy.deepcopy(self.__dict__)
66
+ return output
67
+
68
+ def to_json_string(self):
69
+ """Serializes this instance to a JSON string."""
70
+ return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
models/biggan/pytorch_biggan/pytorch_pretrained_biggan/convert_tf_to_pytorch.py ADDED
@@ -0,0 +1,312 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+ """
3
+ Convert a TF Hub model for BigGAN in a PT one.
4
+ """
5
+ from __future__ import (absolute_import, division, print_function, unicode_literals)
6
+
7
+ from itertools import chain
8
+
9
+ import os
10
+ import argparse
11
+ import logging
12
+ import numpy as np
13
+ import torch
14
+ import torch.nn as nn
15
+ import torch.nn.functional as F
16
+ from torch.nn.functional import normalize
17
+
18
+ from .model import BigGAN, WEIGHTS_NAME, CONFIG_NAME
19
+ from .config import BigGANConfig
20
+
21
+ logger = logging.getLogger(__name__)
22
+
23
+
24
+ def extract_batch_norm_stats(tf_model_path, batch_norm_stats_path=None):
25
+ try:
26
+ import numpy as np
27
+ import tensorflow as tf
28
+ import tensorflow_hub as hub
29
+ except ImportError:
30
+ raise ImportError("Loading a TensorFlow models in PyTorch, requires TensorFlow and TF Hub to be installed. "
31
+ "Please see https://www.tensorflow.org/install/ for installation instructions for TensorFlow. "
32
+ "And see https://github.com/tensorflow/hub for installing Hub. "
33
+ "Probably pip install tensorflow tensorflow-hub")
34
+ tf.reset_default_graph()
35
+ logger.info('Loading BigGAN module from: {}'.format(tf_model_path))
36
+ module = hub.Module(tf_model_path)
37
+ inputs = {k: tf.placeholder(v.dtype, v.get_shape().as_list(), k)
38
+ for k, v in module.get_input_info_dict().items()}
39
+ output = module(inputs)
40
+
41
+ initializer = tf.global_variables_initializer()
42
+ sess = tf.Session()
43
+ stacks = sum(((i*10 + 1, i*10 + 3, i*10 + 6, i*10 + 8) for i in range(50)), ())
44
+ numpy_stacks = []
45
+ for i in stacks:
46
+ logger.info("Retrieving module_apply_default/stack_{}".format(i))
47
+ try:
48
+ stack_var = tf.get_default_graph().get_tensor_by_name("module_apply_default/stack_%d:0" % i)
49
+ except KeyError:
50
+ break # We have all the stats
51
+ numpy_stacks.append(sess.run(stack_var))
52
+
53
+ if batch_norm_stats_path is not None:
54
+ torch.save(numpy_stacks, batch_norm_stats_path)
55
+ else:
56
+ return numpy_stacks
57
+
58
+
59
+ def build_tf_to_pytorch_map(model, config):
60
+ """ Build a map from TF variables to PyTorch modules. """
61
+ tf_to_pt_map = {}
62
+
63
+ # Embeddings and GenZ
64
+ tf_to_pt_map.update({'linear/w/ema_0.9999': model.embeddings.weight,
65
+ 'Generator/GenZ/G_linear/b/ema_0.9999': model.generator.gen_z.bias,
66
+ 'Generator/GenZ/G_linear/w/ema_0.9999': model.generator.gen_z.weight_orig,
67
+ 'Generator/GenZ/G_linear/u0': model.generator.gen_z.weight_u})
68
+
69
+ # GBlock blocks
70
+ model_layer_idx = 0
71
+ for i, (up, in_channels, out_channels) in enumerate(config.layers):
72
+ if i == config.attention_layer_position:
73
+ model_layer_idx += 1
74
+ layer_str = "Generator/GBlock_%d/" % i if i > 0 else "Generator/GBlock/"
75
+ layer_pnt = model.generator.layers[model_layer_idx]
76
+ for i in range(4): # Batchnorms
77
+ batch_str = layer_str + ("BatchNorm_%d/" % i if i > 0 else "BatchNorm/")
78
+ batch_pnt = getattr(layer_pnt, 'bn_%d' % i)
79
+ for name in ('offset', 'scale'):
80
+ sub_module_str = batch_str + name + "/"
81
+ sub_module_pnt = getattr(batch_pnt, name)
82
+ tf_to_pt_map.update({sub_module_str + "w/ema_0.9999": sub_module_pnt.weight_orig,
83
+ sub_module_str + "u0": sub_module_pnt.weight_u})
84
+ for i in range(4): # Convolutions
85
+ conv_str = layer_str + "conv%d/" % i
86
+ conv_pnt = getattr(layer_pnt, 'conv_%d' % i)
87
+ tf_to_pt_map.update({conv_str + "b/ema_0.9999": conv_pnt.bias,
88
+ conv_str + "w/ema_0.9999": conv_pnt.weight_orig,
89
+ conv_str + "u0": conv_pnt.weight_u})
90
+ model_layer_idx += 1
91
+
92
+ # Attention block
93
+ layer_str = "Generator/attention/"
94
+ layer_pnt = model.generator.layers[config.attention_layer_position]
95
+ tf_to_pt_map.update({layer_str + "gamma/ema_0.9999": layer_pnt.gamma})
96
+ for pt_name, tf_name in zip(['snconv1x1_g', 'snconv1x1_o_conv', 'snconv1x1_phi', 'snconv1x1_theta'],
97
+ ['g/', 'o_conv/', 'phi/', 'theta/']):
98
+ sub_module_str = layer_str + tf_name
99
+ sub_module_pnt = getattr(layer_pnt, pt_name)
100
+ tf_to_pt_map.update({sub_module_str + "w/ema_0.9999": sub_module_pnt.weight_orig,
101
+ sub_module_str + "u0": sub_module_pnt.weight_u})
102
+
103
+ # final batch norm and conv to rgb
104
+ layer_str = "Generator/BatchNorm/"
105
+ layer_pnt = model.generator.bn
106
+ tf_to_pt_map.update({layer_str + "offset/ema_0.9999": layer_pnt.bias,
107
+ layer_str + "scale/ema_0.9999": layer_pnt.weight})
108
+ layer_str = "Generator/conv_to_rgb/"
109
+ layer_pnt = model.generator.conv_to_rgb
110
+ tf_to_pt_map.update({layer_str + "b/ema_0.9999": layer_pnt.bias,
111
+ layer_str + "w/ema_0.9999": layer_pnt.weight_orig,
112
+ layer_str + "u0": layer_pnt.weight_u})
113
+ return tf_to_pt_map
114
+
115
+
116
+ def load_tf_weights_in_biggan(model, config, tf_model_path, batch_norm_stats_path=None):
117
+ """ Load tf checkpoints and standing statistics in a pytorch model
118
+ """
119
+ try:
120
+ import numpy as np
121
+ import tensorflow as tf
122
+ except ImportError:
123
+ raise ImportError("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
124
+ "https://www.tensorflow.org/install/ for installation instructions.")
125
+ # Load weights from TF model
126
+ checkpoint_path = tf_model_path + "/variables/variables"
127
+ init_vars = tf.train.list_variables(checkpoint_path)
128
+ from pprint import pprint
129
+ pprint(init_vars)
130
+
131
+ # Extract batch norm statistics from model if needed
132
+ if batch_norm_stats_path:
133
+ stats = torch.load(batch_norm_stats_path)
134
+ else:
135
+ logger.info("Extracting batch norm stats")
136
+ stats = extract_batch_norm_stats(tf_model_path)
137
+
138
+ # Build TF to PyTorch weights loading map
139
+ tf_to_pt_map = build_tf_to_pytorch_map(model, config)
140
+
141
+ tf_weights = {}
142
+ for name in tf_to_pt_map.keys():
143
+ array = tf.train.load_variable(checkpoint_path, name)
144
+ tf_weights[name] = array
145
+ # logger.info("Loading TF weight {} with shape {}".format(name, array.shape))
146
+
147
+ # Load parameters
148
+ with torch.no_grad():
149
+ pt_params_pnt = set()
150
+ for name, pointer in tf_to_pt_map.items():
151
+ array = tf_weights[name]
152
+ if pointer.dim() == 1:
153
+ if pointer.dim() < array.ndim:
154
+ array = np.squeeze(array)
155
+ elif pointer.dim() == 2: # Weights
156
+ array = np.transpose(array)
157
+ elif pointer.dim() == 4: # Convolutions
158
+ array = np.transpose(array, (3, 2, 0, 1))
159
+ else:
160
+ raise "Wrong dimensions to adjust: " + str((pointer.shape, array.shape))
161
+ if pointer.shape != array.shape:
162
+ raise ValueError("Wrong dimensions: " + str((pointer.shape, array.shape)))
163
+ logger.info("Initialize PyTorch weight {} with shape {}".format(name, pointer.shape))
164
+ pointer.data = torch.from_numpy(array) if isinstance(array, np.ndarray) else torch.tensor(array)
165
+ tf_weights.pop(name, None)
166
+ pt_params_pnt.add(pointer.data_ptr())
167
+
168
+ # Prepare SpectralNorm buffers by running one step of Spectral Norm (no need to train the model):
169
+ for module in model.modules():
170
+ for n, buffer in module.named_buffers():
171
+ if n == 'weight_v':
172
+ weight_mat = module.weight_orig
173
+ weight_mat = weight_mat.reshape(weight_mat.size(0), -1)
174
+ u = module.weight_u
175
+
176
+ v = normalize(torch.mv(weight_mat.t(), u), dim=0, eps=config.eps)
177
+ buffer.data = v
178
+ pt_params_pnt.add(buffer.data_ptr())
179
+
180
+ u = normalize(torch.mv(weight_mat, v), dim=0, eps=config.eps)
181
+ module.weight_u.data = u
182
+ pt_params_pnt.add(module.weight_u.data_ptr())
183
+
184
+ # Load batch norm statistics
185
+ index = 0
186
+ for layer in model.generator.layers:
187
+ if not hasattr(layer, 'bn_0'):
188
+ continue
189
+ for i in range(4): # Batchnorms
190
+ bn_pointer = getattr(layer, 'bn_%d' % i)
191
+ pointer = bn_pointer.running_means
192
+ if pointer.shape != stats[index].shape:
193
+ raise "Wrong dimensions: " + str((pointer.shape, stats[index].shape))
194
+ pointer.data = torch.from_numpy(stats[index])
195
+ pt_params_pnt.add(pointer.data_ptr())
196
+
197
+ pointer = bn_pointer.running_vars
198
+ if pointer.shape != stats[index+1].shape:
199
+ raise "Wrong dimensions: " + str((pointer.shape, stats[index].shape))
200
+ pointer.data = torch.from_numpy(stats[index+1])
201
+ pt_params_pnt.add(pointer.data_ptr())
202
+
203
+ index += 2
204
+
205
+ bn_pointer = model.generator.bn
206
+ pointer = bn_pointer.running_means
207
+ if pointer.shape != stats[index].shape:
208
+ raise "Wrong dimensions: " + str((pointer.shape, stats[index].shape))
209
+ pointer.data = torch.from_numpy(stats[index])
210
+ pt_params_pnt.add(pointer.data_ptr())
211
+
212
+ pointer = bn_pointer.running_vars
213
+ if pointer.shape != stats[index+1].shape:
214
+ raise "Wrong dimensions: " + str((pointer.shape, stats[index].shape))
215
+ pointer.data = torch.from_numpy(stats[index+1])
216
+ pt_params_pnt.add(pointer.data_ptr())
217
+
218
+ remaining_params = list(n for n, t in chain(model.named_parameters(), model.named_buffers()) \
219
+ if t.data_ptr() not in pt_params_pnt)
220
+
221
+ logger.info("TF Weights not copied to PyTorch model: {} -".format(', '.join(tf_weights.keys())))
222
+ logger.info("Remanining parameters/buffers from PyTorch model: {} -".format(', '.join(remaining_params)))
223
+
224
+ return model
225
+
226
+
227
+ BigGAN128 = BigGANConfig(output_dim=128, z_dim=128, class_embed_dim=128, channel_width=128, num_classes=1000,
228
+ layers=[(False, 16, 16),
229
+ (True, 16, 16),
230
+ (False, 16, 16),
231
+ (True, 16, 8),
232
+ (False, 8, 8),
233
+ (True, 8, 4),
234
+ (False, 4, 4),
235
+ (True, 4, 2),
236
+ (False, 2, 2),
237
+ (True, 2, 1)],
238
+ attention_layer_position=8, eps=1e-4, n_stats=51)
239
+
240
+ BigGAN256 = BigGANConfig(output_dim=256, z_dim=128, class_embed_dim=128, channel_width=128, num_classes=1000,
241
+ layers=[(False, 16, 16),
242
+ (True, 16, 16),
243
+ (False, 16, 16),
244
+ (True, 16, 8),
245
+ (False, 8, 8),
246
+ (True, 8, 8),
247
+ (False, 8, 8),
248
+ (True, 8, 4),
249
+ (False, 4, 4),
250
+ (True, 4, 2),
251
+ (False, 2, 2),
252
+ (True, 2, 1)],
253
+ attention_layer_position=8, eps=1e-4, n_stats=51)
254
+
255
+ BigGAN512 = BigGANConfig(output_dim=512, z_dim=128, class_embed_dim=128, channel_width=128, num_classes=1000,
256
+ layers=[(False, 16, 16),
257
+ (True, 16, 16),
258
+ (False, 16, 16),
259
+ (True, 16, 8),
260
+ (False, 8, 8),
261
+ (True, 8, 8),
262
+ (False, 8, 8),
263
+ (True, 8, 4),
264
+ (False, 4, 4),
265
+ (True, 4, 2),
266
+ (False, 2, 2),
267
+ (True, 2, 1),
268
+ (False, 1, 1),
269
+ (True, 1, 1)],
270
+ attention_layer_position=8, eps=1e-4, n_stats=51)
271
+
272
+
273
+ def main():
274
+ parser = argparse.ArgumentParser(description="Convert a BigGAN TF Hub model in a PyTorch model")
275
+ parser.add_argument("--model_type", type=str, default="", required=True,
276
+ help="BigGAN model type (128, 256, 512)")
277
+ parser.add_argument("--tf_model_path", type=str, default="", required=True,
278
+ help="Path of the downloaded TF Hub model")
279
+ parser.add_argument("--pt_save_path", type=str, default="",
280
+ help="Folder to save the PyTorch model (default: Folder of the TF Hub model)")
281
+ parser.add_argument("--batch_norm_stats_path", type=str, default="",
282
+ help="Path of previously extracted batch norm statistics")
283
+ args = parser.parse_args()
284
+
285
+ logging.basicConfig(level=logging.INFO)
286
+
287
+ if not args.pt_save_path:
288
+ args.pt_save_path = args.tf_model_path
289
+
290
+ if args.model_type == "128":
291
+ config = BigGAN128
292
+ elif args.model_type == "256":
293
+ config = BigGAN256
294
+ elif args.model_type == "512":
295
+ config = BigGAN512
296
+ else:
297
+ raise ValueError("model_type should be one of 128, 256 or 512")
298
+
299
+ model = BigGAN(config)
300
+ model = load_tf_weights_in_biggan(model, config, args.tf_model_path, args.batch_norm_stats_path)
301
+
302
+ model_save_path = os.path.join(args.pt_save_path, WEIGHTS_NAME)
303
+ config_save_path = os.path.join(args.pt_save_path, CONFIG_NAME)
304
+
305
+ logger.info("Save model dump to {}".format(model_save_path))
306
+ torch.save(model.state_dict(), model_save_path)
307
+ logger.info("Save configuration file to {}".format(config_save_path))
308
+ with open(config_save_path, "w", encoding="utf-8") as f:
309
+ f.write(config.to_json_string())
310
+
311
+ if __name__ == "__main__":
312
+ main()
models/biggan/pytorch_biggan/pytorch_pretrained_biggan/file_utils.py ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Utilities for working with the local dataset cache.
3
+ This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp
4
+ Copyright by the AllenNLP authors.
5
+ """
6
+ from __future__ import (absolute_import, division, print_function, unicode_literals)
7
+
8
+ import json
9
+ import logging
10
+ import os
11
+ import shutil
12
+ import tempfile
13
+ from functools import wraps
14
+ from hashlib import sha256
15
+ import sys
16
+ from io import open
17
+
18
+ import boto3
19
+ import requests
20
+ from botocore.exceptions import ClientError
21
+ from tqdm import tqdm
22
+
23
+ try:
24
+ from urllib.parse import urlparse
25
+ except ImportError:
26
+ from urlparse import urlparse
27
+
28
+ try:
29
+ from pathlib import Path
30
+ PYTORCH_PRETRAINED_BIGGAN_CACHE = Path(os.getenv('PYTORCH_PRETRAINED_BIGGAN_CACHE',
31
+ Path.home() / '.pytorch_pretrained_biggan'))
32
+ except (AttributeError, ImportError):
33
+ PYTORCH_PRETRAINED_BIGGAN_CACHE = os.getenv('PYTORCH_PRETRAINED_BIGGAN_CACHE',
34
+ os.path.join(os.path.expanduser("~"), '.pytorch_pretrained_biggan'))
35
+
36
+ logger = logging.getLogger(__name__) # pylint: disable=invalid-name
37
+
38
+
39
+ def url_to_filename(url, etag=None):
40
+ """
41
+ Convert `url` into a hashed filename in a repeatable way.
42
+ If `etag` is specified, append its hash to the url's, delimited
43
+ by a period.
44
+ """
45
+ url_bytes = url.encode('utf-8')
46
+ url_hash = sha256(url_bytes)
47
+ filename = url_hash.hexdigest()
48
+
49
+ if etag:
50
+ etag_bytes = etag.encode('utf-8')
51
+ etag_hash = sha256(etag_bytes)
52
+ filename += '.' + etag_hash.hexdigest()
53
+
54
+ return filename
55
+
56
+
57
+ def filename_to_url(filename, cache_dir=None):
58
+ """
59
+ Return the url and etag (which may be ``None``) stored for `filename`.
60
+ Raise ``EnvironmentError`` if `filename` or its stored metadata do not exist.
61
+ """
62
+ if cache_dir is None:
63
+ cache_dir = PYTORCH_PRETRAINED_BIGGAN_CACHE
64
+ if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
65
+ cache_dir = str(cache_dir)
66
+
67
+ cache_path = os.path.join(cache_dir, filename)
68
+ if not os.path.exists(cache_path):
69
+ raise EnvironmentError("file {} not found".format(cache_path))
70
+
71
+ meta_path = cache_path + '.json'
72
+ if not os.path.exists(meta_path):
73
+ raise EnvironmentError("file {} not found".format(meta_path))
74
+
75
+ with open(meta_path, encoding="utf-8") as meta_file:
76
+ metadata = json.load(meta_file)
77
+ url = metadata['url']
78
+ etag = metadata['etag']
79
+
80
+ return url, etag
81
+
82
+
83
+ def cached_path(url_or_filename, cache_dir=None):
84
+ """
85
+ Given something that might be a URL (or might be a local path),
86
+ determine which. If it's a URL, download the file and cache it, and
87
+ return the path to the cached file. If it's already a local path,
88
+ make sure the file exists and then return the path.
89
+ """
90
+ if cache_dir is None:
91
+ cache_dir = PYTORCH_PRETRAINED_BIGGAN_CACHE
92
+ if sys.version_info[0] == 3 and isinstance(url_or_filename, Path):
93
+ url_or_filename = str(url_or_filename)
94
+ if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
95
+ cache_dir = str(cache_dir)
96
+
97
+ parsed = urlparse(url_or_filename)
98
+
99
+ if parsed.scheme in ('http', 'https', 's3'):
100
+ # URL, so get it from the cache (downloading if necessary)
101
+ return get_from_cache(url_or_filename, cache_dir)
102
+ elif os.path.exists(url_or_filename):
103
+ # File, and it exists.
104
+ return url_or_filename
105
+ elif parsed.scheme == '':
106
+ # File, but it doesn't exist.
107
+ raise EnvironmentError("file {} not found".format(url_or_filename))
108
+ else:
109
+ # Something unknown
110
+ raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename))
111
+
112
+
113
+ def split_s3_path(url):
114
+ """Split a full s3 path into the bucket name and path."""
115
+ parsed = urlparse(url)
116
+ if not parsed.netloc or not parsed.path:
117
+ raise ValueError("bad s3 path {}".format(url))
118
+ bucket_name = parsed.netloc
119
+ s3_path = parsed.path
120
+ # Remove '/' at beginning of path.
121
+ if s3_path.startswith("/"):
122
+ s3_path = s3_path[1:]
123
+ return bucket_name, s3_path
124
+
125
+
126
+ def s3_request(func):
127
+ """
128
+ Wrapper function for s3 requests in order to create more helpful error
129
+ messages.
130
+ """
131
+
132
+ @wraps(func)
133
+ def wrapper(url, *args, **kwargs):
134
+ try:
135
+ return func(url, *args, **kwargs)
136
+ except ClientError as exc:
137
+ if int(exc.response["Error"]["Code"]) == 404:
138
+ raise EnvironmentError("file {} not found".format(url))
139
+ else:
140
+ raise
141
+
142
+ return wrapper
143
+
144
+
145
+ @s3_request
146
+ def s3_etag(url):
147
+ """Check ETag on S3 object."""
148
+ s3_resource = boto3.resource("s3")
149
+ bucket_name, s3_path = split_s3_path(url)
150
+ s3_object = s3_resource.Object(bucket_name, s3_path)
151
+ return s3_object.e_tag
152
+
153
+
154
+ @s3_request
155
+ def s3_get(url, temp_file):
156
+ """Pull a file directly from S3."""
157
+ s3_resource = boto3.resource("s3")
158
+ bucket_name, s3_path = split_s3_path(url)
159
+ s3_resource.Bucket(bucket_name).download_fileobj(s3_path, temp_file)
160
+
161
+
162
+ def http_get(url, temp_file):
163
+ req = requests.get(url, stream=True)
164
+ content_length = req.headers.get('Content-Length')
165
+ total = int(content_length) if content_length is not None else None
166
+ progress = tqdm(unit="B", total=total)
167
+ for chunk in req.iter_content(chunk_size=1024):
168
+ if chunk: # filter out keep-alive new chunks
169
+ progress.update(len(chunk))
170
+ temp_file.write(chunk)
171
+ progress.close()
172
+
173
+
174
+ def get_from_cache(url, cache_dir=None):
175
+ """
176
+ Given a URL, look for the corresponding dataset in the local cache.
177
+ If it's not there, download it. Then return the path to the cached file.
178
+ """
179
+ if cache_dir is None:
180
+ cache_dir = PYTORCH_PRETRAINED_BIGGAN_CACHE
181
+ if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
182
+ cache_dir = str(cache_dir)
183
+
184
+ if not os.path.exists(cache_dir):
185
+ os.makedirs(cache_dir)
186
+
187
+ # Get eTag to add to filename, if it exists.
188
+ if url.startswith("s3://"):
189
+ etag = s3_etag(url)
190
+ else:
191
+ response = requests.head(url, allow_redirects=True)
192
+ if response.status_code != 200:
193
+ raise IOError("HEAD request failed for url {} with status code {}"
194
+ .format(url, response.status_code))
195
+ etag = response.headers.get("ETag")
196
+
197
+ filename = url_to_filename(url, etag)
198
+
199
+ # get cache path to put the file
200
+ cache_path = os.path.join(cache_dir, filename)
201
+
202
+ if not os.path.exists(cache_path):
203
+ # Download to temporary file, then copy to cache dir once finished.
204
+ # Otherwise you get corrupt cache entries if the download gets interrupted.
205
+ with tempfile.NamedTemporaryFile() as temp_file:
206
+ logger.info("%s not found in cache, downloading to %s", url, temp_file.name)
207
+
208
+ # GET file object
209
+ if url.startswith("s3://"):
210
+ s3_get(url, temp_file)
211
+ else:
212
+ http_get(url, temp_file)
213
+
214
+ # we are copying the file before closing it, so flush to avoid truncation
215
+ temp_file.flush()
216
+ # shutil.copyfileobj() starts at the current position, so go to the start
217
+ temp_file.seek(0)
218
+
219
+ logger.info("copying %s to cache at %s", temp_file.name, cache_path)
220
+ with open(cache_path, 'wb') as cache_file:
221
+ shutil.copyfileobj(temp_file, cache_file)
222
+
223
+ logger.info("creating metadata file for %s", cache_path)
224
+ meta = {'url': url, 'etag': etag}
225
+ meta_path = cache_path + '.json'
226
+ with open(meta_path, 'w', encoding="utf-8") as meta_file:
227
+ json.dump(meta, meta_file)
228
+
229
+ logger.info("removing temp file %s", temp_file.name)
230
+
231
+ return cache_path
232
+
233
+
234
+ def read_set_from_file(filename):
235
+ '''
236
+ Extract a de-duped collection (set) of text from a file.
237
+ Expected file format is one item per line.
238
+ '''
239
+ collection = set()
240
+ with open(filename, 'r', encoding='utf-8') as file_:
241
+ for line in file_:
242
+ collection.add(line.rstrip())
243
+ return collection
244
+
245
+
246
+ def get_file_extension(path, dot=True, lower=True):
247
+ ext = os.path.splitext(path)[1]
248
+ ext = ext if dot else ext[1:]
249
+ return ext.lower() if lower else ext
models/biggan/pytorch_biggan/pytorch_pretrained_biggan/model.py ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+ """ BigGAN PyTorch model.
3
+ From "Large Scale GAN Training for High Fidelity Natural Image Synthesis"
4
+ By Andrew Brocky, Jeff Donahuey and Karen Simonyan.
5
+ https://openreview.net/forum?id=B1xsqj09Fm
6
+
7
+ PyTorch version implemented from the computational graph of the TF Hub module for BigGAN.
8
+ Some part of the code are adapted from https://github.com/brain-research/self-attention-gan
9
+
10
+ This version only comprises the generator (since the discriminator's weights are not released).
11
+ This version only comprises the "deep" version of BigGAN (see publication).
12
+
13
+ Modified by Erik Härkönen:
14
+ * Added support for per-layer latent vectors
15
+ """
16
+ from __future__ import (absolute_import, division, print_function, unicode_literals)
17
+
18
+ import os
19
+ import logging
20
+ import math
21
+
22
+ import numpy as np
23
+ import torch
24
+ import torch.nn as nn
25
+ import torch.nn.functional as F
26
+
27
+ from .config import BigGANConfig
28
+ from .file_utils import cached_path
29
+
30
+ logger = logging.getLogger(__name__)
31
+
32
+ PRETRAINED_MODEL_ARCHIVE_MAP = {
33
+ 'biggan-deep-128': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-128-pytorch_model.bin",
34
+ 'biggan-deep-256': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-256-pytorch_model.bin",
35
+ 'biggan-deep-512': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-512-pytorch_model.bin",
36
+ }
37
+
38
+ PRETRAINED_CONFIG_ARCHIVE_MAP = {
39
+ 'biggan-deep-128': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-128-config.json",
40
+ 'biggan-deep-256': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-256-config.json",
41
+ 'biggan-deep-512': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-512-config.json",
42
+ }
43
+
44
+ WEIGHTS_NAME = 'pytorch_model.bin'
45
+ CONFIG_NAME = 'config.json'
46
+
47
+
48
+ def snconv2d(eps=1e-12, **kwargs):
49
+ return nn.utils.spectral_norm(nn.Conv2d(**kwargs), eps=eps)
50
+
51
+ def snlinear(eps=1e-12, **kwargs):
52
+ return nn.utils.spectral_norm(nn.Linear(**kwargs), eps=eps)
53
+
54
+ def sn_embedding(eps=1e-12, **kwargs):
55
+ return nn.utils.spectral_norm(nn.Embedding(**kwargs), eps=eps)
56
+
57
+ class SelfAttn(nn.Module):
58
+ """ Self attention Layer"""
59
+ def __init__(self, in_channels, eps=1e-12):
60
+ super(SelfAttn, self).__init__()
61
+ self.in_channels = in_channels
62
+ self.snconv1x1_theta = snconv2d(in_channels=in_channels, out_channels=in_channels//8,
63
+ kernel_size=1, bias=False, eps=eps)
64
+ self.snconv1x1_phi = snconv2d(in_channels=in_channels, out_channels=in_channels//8,
65
+ kernel_size=1, bias=False, eps=eps)
66
+ self.snconv1x1_g = snconv2d(in_channels=in_channels, out_channels=in_channels//2,
67
+ kernel_size=1, bias=False, eps=eps)
68
+ self.snconv1x1_o_conv = snconv2d(in_channels=in_channels//2, out_channels=in_channels,
69
+ kernel_size=1, bias=False, eps=eps)
70
+ self.maxpool = nn.MaxPool2d(2, stride=2, padding=0)
71
+ self.softmax = nn.Softmax(dim=-1)
72
+ self.gamma = nn.Parameter(torch.zeros(1))
73
+
74
+ def forward(self, x):
75
+ _, ch, h, w = x.size()
76
+ # Theta path
77
+ theta = self.snconv1x1_theta(x)
78
+ theta = theta.view(-1, ch//8, h*w)
79
+ # Phi path
80
+ phi = self.snconv1x1_phi(x)
81
+ phi = self.maxpool(phi)
82
+ phi = phi.view(-1, ch//8, h*w//4)
83
+ # Attn map
84
+ attn = torch.bmm(theta.permute(0, 2, 1), phi)
85
+ attn = self.softmax(attn)
86
+ # g path
87
+ g = self.snconv1x1_g(x)
88
+ g = self.maxpool(g)
89
+ g = g.view(-1, ch//2, h*w//4)
90
+ # Attn_g - o_conv
91
+ attn_g = torch.bmm(g, attn.permute(0, 2, 1))
92
+ attn_g = attn_g.view(-1, ch//2, h, w)
93
+ attn_g = self.snconv1x1_o_conv(attn_g)
94
+ # Out
95
+ out = x + self.gamma*attn_g
96
+ return out
97
+
98
+
99
+ class BigGANBatchNorm(nn.Module):
100
+ """ This is a batch norm module that can handle conditional input and can be provided with pre-computed
101
+ activation means and variances for various truncation parameters.
102
+
103
+ We cannot just rely on torch.batch_norm since it cannot handle
104
+ batched weights (pytorch 1.0.1). We computate batch_norm our-self without updating running means and variances.
105
+ If you want to train this model you should add running means and variance computation logic.
106
+ """
107
+ def __init__(self, num_features, condition_vector_dim=None, n_stats=51, eps=1e-4, conditional=True):
108
+ super(BigGANBatchNorm, self).__init__()
109
+ self.num_features = num_features
110
+ self.eps = eps
111
+ self.conditional = conditional
112
+
113
+ # We use pre-computed statistics for n_stats values of truncation between 0 and 1
114
+ self.register_buffer('running_means', torch.zeros(n_stats, num_features))
115
+ self.register_buffer('running_vars', torch.ones(n_stats, num_features))
116
+ self.step_size = 1.0 / (n_stats - 1)
117
+
118
+ if conditional:
119
+ assert condition_vector_dim is not None
120
+ self.scale = snlinear(in_features=condition_vector_dim, out_features=num_features, bias=False, eps=eps)
121
+ self.offset = snlinear(in_features=condition_vector_dim, out_features=num_features, bias=False, eps=eps)
122
+ else:
123
+ self.weight = torch.nn.Parameter(torch.Tensor(num_features))
124
+ self.bias = torch.nn.Parameter(torch.Tensor(num_features))
125
+
126
+ def forward(self, x, truncation, condition_vector=None):
127
+ # Retreive pre-computed statistics associated to this truncation
128
+ coef, start_idx = math.modf(truncation / self.step_size)
129
+ start_idx = int(start_idx)
130
+ if coef != 0.0: # Interpolate
131
+ running_mean = self.running_means[start_idx] * coef + self.running_means[start_idx + 1] * (1 - coef)
132
+ running_var = self.running_vars[start_idx] * coef + self.running_vars[start_idx + 1] * (1 - coef)
133
+ else:
134
+ running_mean = self.running_means[start_idx]
135
+ running_var = self.running_vars[start_idx]
136
+
137
+ if self.conditional:
138
+ running_mean = running_mean.unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
139
+ running_var = running_var.unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
140
+
141
+ weight = 1 + self.scale(condition_vector).unsqueeze(-1).unsqueeze(-1)
142
+ bias = self.offset(condition_vector).unsqueeze(-1).unsqueeze(-1)
143
+
144
+ out = (x - running_mean) / torch.sqrt(running_var + self.eps) * weight + bias
145
+ else:
146
+ out = F.batch_norm(x, running_mean, running_var, self.weight, self.bias,
147
+ training=False, momentum=0.0, eps=self.eps)
148
+
149
+ return out
150
+
151
+
152
+ class GenBlock(nn.Module):
153
+ def __init__(self, in_size, out_size, condition_vector_dim, reduction_factor=4, up_sample=False,
154
+ n_stats=51, eps=1e-12):
155
+ super(GenBlock, self).__init__()
156
+ self.up_sample = up_sample
157
+ self.drop_channels = (in_size != out_size)
158
+ middle_size = in_size // reduction_factor
159
+
160
+ self.bn_0 = BigGANBatchNorm(in_size, condition_vector_dim, n_stats=n_stats, eps=eps, conditional=True)
161
+ self.conv_0 = snconv2d(in_channels=in_size, out_channels=middle_size, kernel_size=1, eps=eps)
162
+
163
+ self.bn_1 = BigGANBatchNorm(middle_size, condition_vector_dim, n_stats=n_stats, eps=eps, conditional=True)
164
+ self.conv_1 = snconv2d(in_channels=middle_size, out_channels=middle_size, kernel_size=3, padding=1, eps=eps)
165
+
166
+ self.bn_2 = BigGANBatchNorm(middle_size, condition_vector_dim, n_stats=n_stats, eps=eps, conditional=True)
167
+ self.conv_2 = snconv2d(in_channels=middle_size, out_channels=middle_size, kernel_size=3, padding=1, eps=eps)
168
+
169
+ self.bn_3 = BigGANBatchNorm(middle_size, condition_vector_dim, n_stats=n_stats, eps=eps, conditional=True)
170
+ self.conv_3 = snconv2d(in_channels=middle_size, out_channels=out_size, kernel_size=1, eps=eps)
171
+
172
+ self.relu = nn.ReLU()
173
+
174
+ def forward(self, x, cond_vector, truncation):
175
+ x0 = x
176
+
177
+ x = self.bn_0(x, truncation, cond_vector)
178
+ x = self.relu(x)
179
+ x = self.conv_0(x)
180
+
181
+ x = self.bn_1(x, truncation, cond_vector)
182
+ x = self.relu(x)
183
+ if self.up_sample:
184
+ x = F.interpolate(x, scale_factor=2, mode='nearest')
185
+ x = self.conv_1(x)
186
+
187
+ x = self.bn_2(x, truncation, cond_vector)
188
+ x = self.relu(x)
189
+ x = self.conv_2(x)
190
+
191
+ x = self.bn_3(x, truncation, cond_vector)
192
+ x = self.relu(x)
193
+ x = self.conv_3(x)
194
+
195
+ if self.drop_channels:
196
+ new_channels = x0.shape[1] // 2
197
+ x0 = x0[:, :new_channels, ...]
198
+ if self.up_sample:
199
+ x0 = F.interpolate(x0, scale_factor=2, mode='nearest')
200
+
201
+ out = x + x0
202
+ return out
203
+
204
+ class Generator(nn.Module):
205
+ def __init__(self, config):
206
+ super(Generator, self).__init__()
207
+ self.config = config
208
+ ch = config.channel_width
209
+ condition_vector_dim = config.z_dim * 2
210
+
211
+ self.gen_z = snlinear(in_features=condition_vector_dim,
212
+ out_features=4 * 4 * 16 * ch, eps=config.eps)
213
+
214
+ layers = []
215
+ for i, layer in enumerate(config.layers):
216
+ if i == config.attention_layer_position:
217
+ layers.append(SelfAttn(ch*layer[1], eps=config.eps))
218
+ layers.append(GenBlock(ch*layer[1],
219
+ ch*layer[2],
220
+ condition_vector_dim,
221
+ up_sample=layer[0],
222
+ n_stats=config.n_stats,
223
+ eps=config.eps))
224
+ self.layers = nn.ModuleList(layers)
225
+
226
+ self.bn = BigGANBatchNorm(ch, n_stats=config.n_stats, eps=config.eps, conditional=False)
227
+ self.relu = nn.ReLU()
228
+ self.conv_to_rgb = snconv2d(in_channels=ch, out_channels=ch, kernel_size=3, padding=1, eps=config.eps)
229
+ self.tanh = nn.Tanh()
230
+
231
+ def forward(self, cond_vector, truncation):
232
+ z = self.gen_z(cond_vector[0])
233
+
234
+ # We use this conversion step to be able to use TF weights:
235
+ # TF convention on shape is [batch, height, width, channels]
236
+ # PT convention on shape is [batch, channels, height, width]
237
+ z = z.view(-1, 4, 4, 16 * self.config.channel_width)
238
+ z = z.permute(0, 3, 1, 2).contiguous()
239
+
240
+ cond_idx = 1
241
+ for i, layer in enumerate(self.layers):
242
+ if isinstance(layer, GenBlock):
243
+ z = layer(z, cond_vector[cond_idx], truncation)
244
+ cond_idx += 1
245
+ else:
246
+ z = layer(z)
247
+
248
+ z = self.bn(z, truncation)
249
+ z = self.relu(z)
250
+ z = self.conv_to_rgb(z)
251
+ z = z[:, :3, ...]
252
+ z = self.tanh(z)
253
+ return z
254
+
255
+ class BigGAN(nn.Module):
256
+ """BigGAN Generator."""
257
+
258
+ @classmethod
259
+ def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
260
+ if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
261
+ model_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
262
+ config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
263
+ else:
264
+ model_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
265
+ config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
266
+
267
+ try:
268
+ resolved_model_file = cached_path(model_file, cache_dir=cache_dir)
269
+ resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
270
+ except EnvironmentError:
271
+ logger.error("Wrong model name, should be a valid path to a folder containing "
272
+ "a {} file and a {} file or a model name in {}".format(
273
+ WEIGHTS_NAME, CONFIG_NAME, PRETRAINED_MODEL_ARCHIVE_MAP.keys()))
274
+ raise
275
+
276
+ logger.info("loading model {} from cache at {}".format(pretrained_model_name_or_path, resolved_model_file))
277
+
278
+ # Load config
279
+ config = BigGANConfig.from_json_file(resolved_config_file)
280
+ logger.info("Model config {}".format(config))
281
+
282
+ # Instantiate model.
283
+ model = cls(config, *inputs, **kwargs)
284
+ state_dict = torch.load(resolved_model_file, map_location='cpu' if not torch.cuda.is_available() else None)
285
+ model.load_state_dict(state_dict, strict=False)
286
+ return model
287
+
288
+ def __init__(self, config):
289
+ super(BigGAN, self).__init__()
290
+ self.config = config
291
+ self.embeddings = nn.Linear(config.num_classes, config.z_dim, bias=False)
292
+ self.generator = Generator(config)
293
+ self.n_latents = len(config.layers) + 1 # one for gen_z + one per layer
294
+
295
+ def forward(self, z, class_label, truncation):
296
+ assert 0 < truncation <= 1
297
+
298
+ if not isinstance(z, list):
299
+ z = self.n_latents*[z]
300
+
301
+ if isinstance(class_label, list):
302
+ embed = [self.embeddings(l) for l in class_label]
303
+ else:
304
+ embed = self.n_latents*[self.embeddings(class_label)]
305
+
306
+ assert len(z) == self.n_latents, f'Expected {self.n_latents} latents, got {len(z)}'
307
+ assert len(embed) == self.n_latents, f'Expected {self.n_latents} class vectors, got {len(class_label)}'
308
+
309
+ cond_vectors = [torch.cat((z, e), dim=1) for (z, e) in zip(z, embed)]
310
+ z = self.generator(cond_vectors, truncation)
311
+ return z
312
+
313
+
314
+ if __name__ == "__main__":
315
+ import PIL
316
+ from .utils import truncated_noise_sample, save_as_images, one_hot_from_names
317
+ from .convert_tf_to_pytorch import load_tf_weights_in_biggan
318
+
319
+ load_cache = False
320
+ cache_path = './saved_model.pt'
321
+ config = BigGANConfig()
322
+ model = BigGAN(config)
323
+ if not load_cache:
324
+ model = load_tf_weights_in_biggan(model, config, './models/model_128/', './models/model_128/batchnorms_stats.bin')
325
+ torch.save(model.state_dict(), cache_path)
326
+ else:
327
+ model.load_state_dict(torch.load(cache_path))
328
+
329
+ model.eval()
330
+
331
+ truncation = 0.4
332
+ noise = truncated_noise_sample(batch_size=2, truncation=truncation)
333
+ label = one_hot_from_names('diver', batch_size=2)
334
+
335
+ # Tests
336
+ # noise = np.zeros((1, 128))
337
+ # label = [983]
338
+
339
+ noise = torch.tensor(noise, dtype=torch.float)
340
+ label = torch.tensor(label, dtype=torch.float)
341
+ with torch.no_grad():
342
+ outputs = model(noise, label, truncation)
343
+ print(outputs.shape)
344
+
345
+ save_as_images(outputs)
models/biggan/pytorch_biggan/pytorch_pretrained_biggan/utils.py ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+ """ BigGAN utilities to prepare truncated noise samples and convert/save/display output images.
3
+ Also comprise ImageNet utilities to prepare one hot input vectors for ImageNet classes.
4
+ We use Wordnet so you can just input a name in a string and automatically get a corresponding
5
+ imagenet class if it exists (or a hypo/hypernym exists in imagenet).
6
+ """
7
+ from __future__ import absolute_import, division, print_function, unicode_literals
8
+
9
+ import json
10
+ import logging
11
+ from io import BytesIO
12
+
13
+ import numpy as np
14
+ from scipy.stats import truncnorm
15
+
16
+ logger = logging.getLogger(__name__)
17
+
18
+ NUM_CLASSES = 1000
19
+
20
+
21
+ def truncated_noise_sample(batch_size=1, dim_z=128, truncation=1., seed=None):
22
+ """ Create a truncated noise vector.
23
+ Params:
24
+ batch_size: batch size.
25
+ dim_z: dimension of z
26
+ truncation: truncation value to use
27
+ seed: seed for the random generator
28
+ Output:
29
+ array of shape (batch_size, dim_z)
30
+ """
31
+ state = None if seed is None else np.random.RandomState(seed)
32
+ values = truncnorm.rvs(-2, 2, size=(batch_size, dim_z), random_state=state).astype(np.float32)
33
+ return truncation * values
34
+
35
+
36
+ def convert_to_images(obj):
37
+ """ Convert an output tensor from BigGAN in a list of images.
38
+ Params:
39
+ obj: tensor or numpy array of shape (batch_size, channels, height, width)
40
+ Output:
41
+ list of Pillow Images of size (height, width)
42
+ """
43
+ try:
44
+ import PIL
45
+ except ImportError:
46
+ raise ImportError("Please install Pillow to use images: pip install Pillow")
47
+
48
+ if not isinstance(obj, np.ndarray):
49
+ obj = obj.detach().numpy()
50
+
51
+ obj = obj.transpose((0, 2, 3, 1))
52
+ obj = np.clip(((obj + 1) / 2.0) * 256, 0, 255)
53
+
54
+ img = []
55
+ for i, out in enumerate(obj):
56
+ out_array = np.asarray(np.uint8(out), dtype=np.uint8)
57
+ img.append(PIL.Image.fromarray(out_array))
58
+ return img
59
+
60
+
61
+ def save_as_images(obj, file_name='output'):
62
+ """ Convert and save an output tensor from BigGAN in a list of saved images.
63
+ Params:
64
+ obj: tensor or numpy array of shape (batch_size, channels, height, width)
65
+ file_name: path and beggingin of filename to save.
66
+ Images will be saved as `file_name_{image_number}.png`
67
+ """
68
+ img = convert_to_images(obj)
69
+
70
+ for i, out in enumerate(img):
71
+ current_file_name = file_name + '_%d.png' % i
72
+ logger.info("Saving image to {}".format(current_file_name))
73
+ out.save(current_file_name, 'png')
74
+
75
+
76
+ def display_in_terminal(obj):
77
+ """ Convert and display an output tensor from BigGAN in the terminal.
78
+ This function use `libsixel` and will only work in a libsixel-compatible terminal.
79
+ Please refer to https://github.com/saitoha/libsixel for more details.
80
+
81
+ Params:
82
+ obj: tensor or numpy array of shape (batch_size, channels, height, width)
83
+ file_name: path and beggingin of filename to save.
84
+ Images will be saved as `file_name_{image_number}.png`
85
+ """
86
+ try:
87
+ import PIL
88
+ from libsixel import (sixel_output_new, sixel_dither_new, sixel_dither_initialize,
89
+ sixel_dither_set_palette, sixel_dither_set_pixelformat,
90
+ sixel_dither_get, sixel_encode, sixel_dither_unref,
91
+ sixel_output_unref, SIXEL_PIXELFORMAT_RGBA8888,
92
+ SIXEL_PIXELFORMAT_RGB888, SIXEL_PIXELFORMAT_PAL8,
93
+ SIXEL_PIXELFORMAT_G8, SIXEL_PIXELFORMAT_G1)
94
+ except ImportError:
95
+ raise ImportError("Display in Terminal requires Pillow, libsixel "
96
+ "and a libsixel compatible terminal. "
97
+ "Please read info at https://github.com/saitoha/libsixel "
98
+ "and install with pip install Pillow libsixel-python")
99
+
100
+ s = BytesIO()
101
+
102
+ images = convert_to_images(obj)
103
+ widths, heights = zip(*(i.size for i in images))
104
+
105
+ output_width = sum(widths)
106
+ output_height = max(heights)
107
+
108
+ output_image = PIL.Image.new('RGB', (output_width, output_height))
109
+
110
+ x_offset = 0
111
+ for im in images:
112
+ output_image.paste(im, (x_offset,0))
113
+ x_offset += im.size[0]
114
+
115
+ try:
116
+ data = output_image.tobytes()
117
+ except NotImplementedError:
118
+ data = output_image.tostring()
119
+ output = sixel_output_new(lambda data, s: s.write(data), s)
120
+
121
+ try:
122
+ if output_image.mode == 'RGBA':
123
+ dither = sixel_dither_new(256)
124
+ sixel_dither_initialize(dither, data, output_width, output_height, SIXEL_PIXELFORMAT_RGBA8888)
125
+ elif output_image.mode == 'RGB':
126
+ dither = sixel_dither_new(256)
127
+ sixel_dither_initialize(dither, data, output_width, output_height, SIXEL_PIXELFORMAT_RGB888)
128
+ elif output_image.mode == 'P':
129
+ palette = output_image.getpalette()
130
+ dither = sixel_dither_new(256)
131
+ sixel_dither_set_palette(dither, palette)
132
+ sixel_dither_set_pixelformat(dither, SIXEL_PIXELFORMAT_PAL8)
133
+ elif output_image.mode == 'L':
134
+ dither = sixel_dither_get(SIXEL_BUILTIN_G8)
135
+ sixel_dither_set_pixelformat(dither, SIXEL_PIXELFORMAT_G8)
136
+ elif output_image.mode == '1':
137
+ dither = sixel_dither_get(SIXEL_BUILTIN_G1)
138
+ sixel_dither_set_pixelformat(dither, SIXEL_PIXELFORMAT_G1)
139
+ else:
140
+ raise RuntimeError('unexpected output_image mode')
141
+ try:
142
+ sixel_encode(data, output_width, output_height, 1, dither, output)
143
+ print(s.getvalue().decode('ascii'))
144
+ finally:
145
+ sixel_dither_unref(dither)
146
+ finally:
147
+ sixel_output_unref(output)
148
+
149
+
150
+ def one_hot_from_int(int_or_list, batch_size=1):
151
+ """ Create a one-hot vector from a class index or a list of class indices.
152
+ Params:
153
+ int_or_list: int, or list of int, of the imagenet classes (between 0 and 999)
154
+ batch_size: batch size.
155
+ If int_or_list is an int create a batch of identical classes.
156
+ If int_or_list is a list, we should have `len(int_or_list) == batch_size`
157
+ Output:
158
+ array of shape (batch_size, 1000)
159
+ """
160
+ if isinstance(int_or_list, int):
161
+ int_or_list = [int_or_list]
162
+
163
+ if len(int_or_list) == 1 and batch_size > 1:
164
+ int_or_list = [int_or_list[0]] * batch_size
165
+
166
+ assert batch_size == len(int_or_list)
167
+
168
+ array = np.zeros((batch_size, NUM_CLASSES), dtype=np.float32)
169
+ for i, j in enumerate(int_or_list):
170
+ array[i, j] = 1.0
171
+ return array
172
+
173
+
174
+ def one_hot_from_names(class_name_or_list, batch_size=1):
175
+ """ Create a one-hot vector from the name of an imagenet class ('tennis ball', 'daisy', ...).
176
+ We use NLTK's wordnet search to try to find the relevant synset of ImageNet and take the first one.
177
+ If we can't find it direcly, we look at the hyponyms and hypernyms of the class name.
178
+
179
+ Params:
180
+ class_name_or_list: string containing the name of an imagenet object or a list of such strings (for a batch).
181
+ Output:
182
+ array of shape (batch_size, 1000)
183
+ """
184
+ try:
185
+ from nltk.corpus import wordnet as wn
186
+ except ImportError:
187
+ raise ImportError("You need to install nltk to use this function")
188
+
189
+ if not isinstance(class_name_or_list, (list, tuple)):
190
+ class_name_or_list = [class_name_or_list]
191
+ else:
192
+ batch_size = max(batch_size, len(class_name_or_list))
193
+
194
+ classes = []
195
+ for class_name in class_name_or_list:
196
+ class_name = class_name.replace(" ", "_")
197
+
198
+ original_synsets = wn.synsets(class_name)
199
+ original_synsets = list(filter(lambda s: s.pos() == 'n', original_synsets)) # keep only names
200
+ if not original_synsets:
201
+ return None
202
+
203
+ possible_synsets = list(filter(lambda s: s.offset() in IMAGENET, original_synsets))
204
+ if possible_synsets:
205
+ classes.append(IMAGENET[possible_synsets[0].offset()])
206
+ else:
207
+ # try hypernyms and hyponyms
208
+ possible_synsets = sum([s.hypernyms() + s.hyponyms() for s in original_synsets], [])
209
+ possible_synsets = list(filter(lambda s: s.offset() in IMAGENET, possible_synsets))
210
+ if possible_synsets:
211
+ classes.append(IMAGENET[possible_synsets[0].offset()])
212
+
213
+ return one_hot_from_int(classes, batch_size=batch_size)
214
+
215
+
216
+ IMAGENET = {1440764: 0, 1443537: 1, 1484850: 2, 1491361: 3, 1494475: 4, 1496331: 5, 1498041: 6, 1514668: 7, 1514859: 8, 1518878: 9, 1530575: 10, 1531178: 11, 1532829: 12, 1534433: 13, 1537544: 14, 1558993: 15, 1560419: 16, 1580077: 17, 1582220: 18, 1592084: 19, 1601694: 20, 1608432: 21, 1614925: 22, 1616318: 23, 1622779: 24, 1629819: 25, 1630670: 26, 1631663: 27, 1632458: 28, 1632777: 29, 1641577: 30, 1644373: 31, 1644900: 32, 1664065: 33, 1665541: 34, 1667114: 35, 1667778: 36, 1669191: 37, 1675722: 38, 1677366: 39, 1682714: 40, 1685808: 41, 1687978: 42, 1688243: 43, 1689811: 44, 1692333: 45, 1693334: 46, 1694178: 47, 1695060: 48, 1697457: 49, 1698640: 50, 1704323: 51, 1728572: 52, 1728920: 53, 1729322: 54, 1729977: 55, 1734418: 56, 1735189: 57, 1737021: 58, 1739381: 59, 1740131: 60, 1742172: 61, 1744401: 62, 1748264: 63, 1749939: 64, 1751748: 65, 1753488: 66, 1755581: 67, 1756291: 68, 1768244: 69, 1770081: 70, 1770393: 71, 1773157: 72, 1773549: 73, 1773797: 74, 1774384: 75, 1774750: 76, 1775062: 77, 1776313: 78, 1784675: 79, 1795545: 80, 1796340: 81, 1797886: 82, 1798484: 83, 1806143: 84, 1806567: 85, 1807496: 86, 1817953: 87, 1818515: 88, 1819313: 89, 1820546: 90, 1824575: 91, 1828970: 92, 1829413: 93, 1833805: 94, 1843065: 95, 1843383: 96, 1847000: 97, 1855032: 98, 1855672: 99, 1860187: 100, 1871265: 101, 1872401: 102, 1873310: 103, 1877812: 104, 1882714: 105, 1883070: 106, 1910747: 107, 1914609: 108, 1917289: 109, 1924916: 110, 1930112: 111, 1943899: 112, 1944390: 113, 1945685: 114, 1950731: 115, 1955084: 116, 1968897: 117, 1978287: 118, 1978455: 119, 1980166: 120, 1981276: 121, 1983481: 122, 1984695: 123, 1985128: 124, 1986214: 125, 1990800: 126, 2002556: 127, 2002724: 128, 2006656: 129, 2007558: 130, 2009229: 131, 2009912: 132, 2011460: 133, 2012849: 134, 2013706: 135, 2017213: 136, 2018207: 137, 2018795: 138, 2025239: 139, 2027492: 140, 2028035: 141, 2033041: 142, 2037110: 143, 2051845: 144, 2056570: 145, 2058221: 146, 2066245: 147, 2071294: 148, 2074367: 149, 2077923: 150, 2085620: 151, 2085782: 152, 2085936: 153, 2086079: 154, 2086240: 155, 2086646: 156, 2086910: 157, 2087046: 158, 2087394: 159, 2088094: 160, 2088238: 161, 2088364: 162, 2088466: 163, 2088632: 164, 2089078: 165, 2089867: 166, 2089973: 167, 2090379: 168, 2090622: 169, 2090721: 170, 2091032: 171, 2091134: 172, 2091244: 173, 2091467: 174, 2091635: 175, 2091831: 176, 2092002: 177, 2092339: 178, 2093256: 179, 2093428: 180, 2093647: 181, 2093754: 182, 2093859: 183, 2093991: 184, 2094114: 185, 2094258: 186, 2094433: 187, 2095314: 188, 2095570: 189, 2095889: 190, 2096051: 191, 2096177: 192, 2096294: 193, 2096437: 194, 2096585: 195, 2097047: 196, 2097130: 197, 2097209: 198, 2097298: 199, 2097474: 200, 2097658: 201, 2098105: 202, 2098286: 203, 2098413: 204, 2099267: 205, 2099429: 206, 2099601: 207, 2099712: 208, 2099849: 209, 2100236: 210, 2100583: 211, 2100735: 212, 2100877: 213, 2101006: 214, 2101388: 215, 2101556: 216, 2102040: 217, 2102177: 218, 2102318: 219, 2102480: 220, 2102973: 221, 2104029: 222, 2104365: 223, 2105056: 224, 2105162: 225, 2105251: 226, 2105412: 227, 2105505: 228, 2105641: 229, 2105855: 230, 2106030: 231, 2106166: 232, 2106382: 233, 2106550: 234, 2106662: 235, 2107142: 236, 2107312: 237, 2107574: 238, 2107683: 239, 2107908: 240, 2108000: 241, 2108089: 242, 2108422: 243, 2108551: 244, 2108915: 245, 2109047: 246, 2109525: 247, 2109961: 248, 2110063: 249, 2110185: 250, 2110341: 251, 2110627: 252, 2110806: 253, 2110958: 254, 2111129: 255, 2111277: 256, 2111500: 257, 2111889: 258, 2112018: 259, 2112137: 260, 2112350: 261, 2112706: 262, 2113023: 263, 2113186: 264, 2113624: 265, 2113712: 266, 2113799: 267, 2113978: 268, 2114367: 269, 2114548: 270, 2114712: 271, 2114855: 272, 2115641: 273, 2115913: 274, 2116738: 275, 2117135: 276, 2119022: 277, 2119789: 278, 2120079: 279, 2120505: 280, 2123045: 281, 2123159: 282, 2123394: 283, 2123597: 284, 2124075: 285, 2125311: 286, 2127052: 287, 2128385: 288, 2128757: 289, 2128925: 290, 2129165: 291, 2129604: 292, 2130308: 293, 2132136: 294, 2133161: 295, 2134084: 296, 2134418: 297, 2137549: 298, 2138441: 299, 2165105: 300, 2165456: 301, 2167151: 302, 2168699: 303, 2169497: 304, 2172182: 305, 2174001: 306, 2177972: 307, 2190166: 308, 2206856: 309, 2219486: 310, 2226429: 311, 2229544: 312, 2231487: 313, 2233338: 314, 2236044: 315, 2256656: 316, 2259212: 317, 2264363: 318, 2268443: 319, 2268853: 320, 2276258: 321, 2277742: 322, 2279972: 323, 2280649: 324, 2281406: 325, 2281787: 326, 2317335: 327, 2319095: 328, 2321529: 329, 2325366: 330, 2326432: 331, 2328150: 332, 2342885: 333, 2346627: 334, 2356798: 335, 2361337: 336, 2363005: 337, 2364673: 338, 2389026: 339, 2391049: 340, 2395406: 341, 2396427: 342, 2397096: 343, 2398521: 344, 2403003: 345, 2408429: 346, 2410509: 347, 2412080: 348, 2415577: 349, 2417914: 350, 2422106: 351, 2422699: 352, 2423022: 353, 2437312: 354, 2437616: 355, 2441942: 356, 2442845: 357, 2443114: 358, 2443484: 359, 2444819: 360, 2445715: 361, 2447366: 362, 2454379: 363, 2457408: 364, 2480495: 365, 2480855: 366, 2481823: 367, 2483362: 368, 2483708: 369, 2484975: 370, 2486261: 371, 2486410: 372, 2487347: 373, 2488291: 374, 2488702: 375, 2489166: 376, 2490219: 377, 2492035: 378, 2492660: 379, 2493509: 380, 2493793: 381, 2494079: 382, 2497673: 383, 2500267: 384, 2504013: 385, 2504458: 386, 2509815: 387, 2510455: 388, 2514041: 389, 2526121: 390, 2536864: 391, 2606052: 392, 2607072: 393, 2640242: 394, 2641379: 395, 2643566: 396, 2655020: 397, 2666196: 398, 2667093: 399, 2669723: 400, 2672831: 401, 2676566: 402, 2687172: 403, 2690373: 404, 2692877: 405, 2699494: 406, 2701002: 407, 2704792: 408, 2708093: 409, 2727426: 410, 2730930: 411, 2747177: 412, 2749479: 413, 2769748: 414, 2776631: 415, 2777292: 416, 2782093: 417, 2783161: 418, 2786058: 419, 2787622: 420, 2788148: 421, 2790996: 422, 2791124: 423, 2791270: 424, 2793495: 425, 2794156: 426, 2795169: 427, 2797295: 428, 2799071: 429, 2802426: 430, 2804414: 431, 2804610: 432, 2807133: 433, 2808304: 434, 2808440: 435, 2814533: 436, 2814860: 437, 2815834: 438, 2817516: 439, 2823428: 440, 2823750: 441, 2825657: 442, 2834397: 443, 2835271: 444, 2837789: 445, 2840245: 446, 2841315: 447, 2843684: 448, 2859443: 449, 2860847: 450, 2865351: 451, 2869837: 452, 2870880: 453, 2871525: 454, 2877765: 455, 2879718: 456, 2883205: 457, 2892201: 458, 2892767: 459, 2894605: 460, 2895154: 461, 2906734: 462, 2909870: 463, 2910353: 464, 2916936: 465, 2917067: 466, 2927161: 467, 2930766: 468, 2939185: 469, 2948072: 470, 2950826: 471, 2951358: 472, 2951585: 473, 2963159: 474, 2965783: 475, 2966193: 476, 2966687: 477, 2971356: 478, 2974003: 479, 2977058: 480, 2978881: 481, 2979186: 482, 2980441: 483, 2981792: 484, 2988304: 485, 2992211: 486, 2992529: 487, 2999410: 488, 3000134: 489, 3000247: 490, 3000684: 491, 3014705: 492, 3016953: 493, 3017168: 494, 3018349: 495, 3026506: 496, 3028079: 497, 3032252: 498, 3041632: 499, 3042490: 500, 3045698: 501, 3047690: 502, 3062245: 503, 3063599: 504, 3063689: 505, 3065424: 506, 3075370: 507, 3085013: 508, 3089624: 509, 3095699: 510, 3100240: 511, 3109150: 512, 3110669: 513, 3124043: 514, 3124170: 515, 3125729: 516, 3126707: 517, 3127747: 518, 3127925: 519, 3131574: 520, 3133878: 521, 3134739: 522, 3141823: 523, 3146219: 524, 3160309: 525, 3179701: 526, 3180011: 527, 3187595: 528, 3188531: 529, 3196217: 530, 3197337: 531, 3201208: 532, 3207743: 533, 3207941: 534, 3208938: 535, 3216828: 536, 3218198: 537, 3220513: 538, 3223299: 539, 3240683: 540, 3249569: 541, 3250847: 542, 3255030: 543, 3259280: 544, 3271574: 545, 3272010: 546, 3272562: 547, 3290653: 548, 3291819: 549, 3297495: 550, 3314780: 551, 3325584: 552, 3337140: 553, 3344393: 554, 3345487: 555, 3347037: 556, 3355925: 557, 3372029: 558, 3376595: 559, 3379051: 560, 3384352: 561, 3388043: 562, 3388183: 563, 3388549: 564, 3393912: 565, 3394916: 566, 3400231: 567, 3404251: 568, 3417042: 569, 3424325: 570, 3425413: 571, 3443371: 572, 3444034: 573, 3445777: 574, 3445924: 575, 3447447: 576, 3447721: 577, 3450230: 578, 3452741: 579, 3457902: 580, 3459775: 581, 3461385: 582, 3467068: 583, 3476684: 584, 3476991: 585, 3478589: 586, 3481172: 587, 3482405: 588, 3483316: 589, 3485407: 590, 3485794: 591, 3492542: 592, 3494278: 593, 3495258: 594, 3496892: 595, 3498962: 596, 3527444: 597, 3529860: 598, 3530642: 599, 3532672: 600, 3534580: 601, 3535780: 602, 3538406: 603, 3544143: 604, 3584254: 605, 3584829: 606, 3590841: 607, 3594734: 608, 3594945: 609, 3595614: 610, 3598930: 611, 3599486: 612, 3602883: 613, 3617480: 614, 3623198: 615, 3627232: 616, 3630383: 617, 3633091: 618, 3637318: 619, 3642806: 620, 3649909: 621, 3657121: 622, 3658185: 623, 3661043: 624, 3662601: 625, 3666591: 626, 3670208: 627, 3673027: 628, 3676483: 629, 3680355: 630, 3690938: 631, 3691459: 632, 3692522: 633, 3697007: 634, 3706229: 635, 3709823: 636, 3710193: 637, 3710637: 638, 3710721: 639, 3717622: 640, 3720891: 641, 3721384: 642, 3724870: 643, 3729826: 644, 3733131: 645, 3733281: 646, 3733805: 647, 3742115: 648, 3743016: 649, 3759954: 650, 3761084: 651, 3763968: 652, 3764736: 653, 3769881: 654, 3770439: 655, 3770679: 656, 3773504: 657, 3775071: 658, 3775546: 659, 3776460: 660, 3777568: 661, 3777754: 662, 3781244: 663, 3782006: 664, 3785016: 665, 3786901: 666, 3787032: 667, 3788195: 668, 3788365: 669, 3791053: 670, 3792782: 671, 3792972: 672, 3793489: 673, 3794056: 674, 3796401: 675, 3803284: 676, 3804744: 677, 3814639: 678, 3814906: 679, 3825788: 680, 3832673: 681, 3837869: 682, 3838899: 683, 3840681: 684, 3841143: 685, 3843555: 686, 3854065: 687, 3857828: 688, 3866082: 689, 3868242: 690, 3868863: 691, 3871628: 692, 3873416: 693, 3874293: 694, 3874599: 695, 3876231: 696, 3877472: 697, 3877845: 698, 3884397: 699, 3887697: 700, 3888257: 701, 3888605: 702, 3891251: 703, 3891332: 704, 3895866: 705, 3899768: 706, 3902125: 707, 3903868: 708, 3908618: 709, 3908714: 710, 3916031: 711, 3920288: 712, 3924679: 713, 3929660: 714, 3929855: 715, 3930313: 716, 3930630: 717, 3933933: 718, 3935335: 719, 3937543: 720, 3938244: 721, 3942813: 722, 3944341: 723, 3947888: 724, 3950228: 725, 3954731: 726, 3956157: 727, 3958227: 728, 3961711: 729, 3967562: 730, 3970156: 731, 3976467: 732, 3976657: 733, 3977966: 734, 3980874: 735, 3982430: 736, 3983396: 737, 3991062: 738, 3992509: 739, 3995372: 740, 3998194: 741, 4004767: 742, 4005630: 743, 4008634: 744, 4009552: 745, 4019541: 746, 4023962: 747, 4026417: 748, 4033901: 749, 4033995: 750, 4037443: 751, 4039381: 752, 4040759: 753, 4041544: 754, 4044716: 755, 4049303: 756, 4065272: 757, 4067472: 758, 4069434: 759, 4070727: 760, 4074963: 761, 4081281: 762, 4086273: 763, 4090263: 764, 4099969: 765, 4111531: 766, 4116512: 767, 4118538: 768, 4118776: 769, 4120489: 770, 4125021: 771, 4127249: 772, 4131690: 773, 4133789: 774, 4136333: 775, 4141076: 776, 4141327: 777, 4141975: 778, 4146614: 779, 4147183: 780, 4149813: 781, 4152593: 782, 4153751: 783, 4154565: 784, 4162706: 785, 4179913: 786, 4192698: 787, 4200800: 788, 4201297: 789, 4204238: 790, 4204347: 791, 4208210: 792, 4209133: 793, 4209239: 794, 4228054: 795, 4229816: 796, 4235860: 797, 4238763: 798, 4239074: 799, 4243546: 800, 4251144: 801, 4252077: 802, 4252225: 803, 4254120: 804, 4254680: 805, 4254777: 806, 4258138: 807, 4259630: 808, 4263257: 809, 4264628: 810, 4265275: 811, 4266014: 812, 4270147: 813, 4273569: 814, 4275548: 815, 4277352: 816, 4285008: 817, 4286575: 818, 4296562: 819, 4310018: 820, 4311004: 821, 4311174: 822, 4317175: 823, 4325704: 824, 4326547: 825, 4328186: 826, 4330267: 827, 4332243: 828, 4335435: 829, 4336792: 830, 4344873: 831, 4346328: 832, 4347754: 833, 4350905: 834, 4355338: 835, 4355933: 836, 4356056: 837, 4357314: 838, 4366367: 839, 4367480: 840, 4370456: 841, 4371430: 842, 4371774: 843, 4372370: 844, 4376876: 845, 4380533: 846, 4389033: 847, 4392985: 848, 4398044: 849, 4399382: 850, 4404412: 851, 4409515: 852, 4417672: 853, 4418357: 854, 4423845: 855, 4428191: 856, 4429376: 857, 4435653: 858, 4442312: 859, 4443257: 860, 4447861: 861, 4456115: 862, 4458633: 863, 4461696: 864, 4462240: 865, 4465501: 866, 4467665: 867, 4476259: 868, 4479046: 869, 4482393: 870, 4483307: 871, 4485082: 872, 4486054: 873, 4487081: 874, 4487394: 875, 4493381: 876, 4501370: 877, 4505470: 878, 4507155: 879, 4509417: 880, 4515003: 881, 4517823: 882, 4522168: 883, 4523525: 884, 4525038: 885, 4525305: 886, 4532106: 887, 4532670: 888, 4536866: 889, 4540053: 890, 4542943: 891, 4548280: 892, 4548362: 893, 4550184: 894, 4552348: 895, 4553703: 896, 4554684: 897, 4557648: 898, 4560804: 899, 4562935: 900, 4579145: 901, 4579432: 902, 4584207: 903, 4589890: 904, 4590129: 905, 4591157: 906, 4591713: 907, 4592741: 908, 4596742: 909, 4597913: 910, 4599235: 911, 4604644: 912, 4606251: 913, 4612504: 914, 4613696: 915, 6359193: 916, 6596364: 917, 6785654: 918, 6794110: 919, 6874185: 920, 7248320: 921, 7565083: 922, 7579787: 923, 7583066: 924, 7584110: 925, 7590611: 926, 7613480: 927, 7614500: 928, 7615774: 929, 7684084: 930, 7693725: 931, 7695742: 932, 7697313: 933, 7697537: 934, 7711569: 935, 7714571: 936, 7714990: 937, 7715103: 938, 7716358: 939, 7716906: 940, 7717410: 941, 7717556: 942, 7718472: 943, 7718747: 944, 7720875: 945, 7730033: 946, 7734744: 947, 7742313: 948, 7745940: 949, 7747607: 950, 7749582: 951, 7753113: 952, 7753275: 953, 7753592: 954, 7754684: 955, 7760859: 956, 7768694: 957, 7802026: 958, 7831146: 959, 7836838: 960, 7860988: 961, 7871810: 962, 7873807: 963, 7875152: 964, 7880968: 965, 7892512: 966, 7920052: 967, 7930864: 968, 7932039: 969, 9193705: 970, 9229709: 971, 9246464: 972, 9256479: 973, 9288635: 974, 9332890: 975, 9399592: 976, 9421951: 977, 9428293: 978, 9468604: 979, 9472597: 980, 9835506: 981, 10148035: 982, 10565667: 983, 11879895: 984, 11939491: 985, 12057211: 986, 12144580: 987, 12267677: 988, 12620546: 989, 12768682: 990, 12985857: 991, 12998815: 992, 13037406: 993, 13040303: 994, 13044778: 995, 13052670: 996, 13054560: 997, 13133613: 998, 15075141: 999}
models/biggan/pytorch_biggan/requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ # PyTorch
2
+ torch>=0.4.1
3
+ # progress bars in model download and training scripts
4
+ tqdm
5
+ # Accessing files from S3 directly.
6
+ boto3
7
+ # Used for downloading models over HTTP
8
+ requests
models/biggan/pytorch_biggan/scripts/convert_tf_hub_models.sh ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019-present, Thomas Wolf, Huggingface Inc.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ #
7
+
8
+ set -e
9
+ set -x
10
+
11
+ models="128 256 512"
12
+
13
+ mkdir -p models/model_128
14
+ mkdir -p models/model_256
15
+ mkdir -p models/model_512
16
+
17
+ # Convert TF Hub models.
18
+ for model in $models
19
+ do
20
+ pytorch_pretrained_biggan --model_type $model --tf_model_path models/model_$model --pt_save_path models/model_$model
21
+ done
models/biggan/pytorch_biggan/scripts/download_tf_hub_models.sh ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019-present, Thomas Wolf, Huggingface Inc.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ #
7
+
8
+ set -e
9
+ set -x
10
+
11
+ models="128 256 512"
12
+
13
+ mkdir -p models/model_128
14
+ mkdir -p models/model_256
15
+ mkdir -p models/model_512
16
+
17
+ # Download TF Hub models.
18
+ for model in $models
19
+ do
20
+ curl -L "https://tfhub.dev/deepmind/biggan-deep-$model/1?tf-hub-format=compressed" | tar -zxvC models/model_$model
21
+ done
models/biggan/pytorch_biggan/setup.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Simple check list from AllenNLP repo: https://github.com/allenai/allennlp/blob/master/setup.py
3
+
4
+ To create the package for pypi.
5
+
6
+ 1. Change the version in __init__.py and setup.py.
7
+
8
+ 2. Commit these changes with the message: "Release: VERSION"
9
+
10
+ 3. Add a tag in git to mark the release: "git tag VERSION -m'Adds tag VERSION for pypi' "
11
+ Push the tag to git: git push --tags origin master
12
+
13
+ 4. Build both the sources and the wheel. Do not change anything in setup.py between
14
+ creating the wheel and the source distribution (obviously).
15
+
16
+ For the wheel, run: "python setup.py bdist_wheel" in the top level allennlp directory.
17
+ (this will build a wheel for the python version you use to build it - make sure you use python 3.x).
18
+
19
+ For the sources, run: "python setup.py sdist"
20
+ You should now have a /dist directory with both .whl and .tar.gz source versions of allennlp.
21
+
22
+ 5. Check that everything looks correct by uploading the package to the pypi test server:
23
+
24
+ twine upload dist/* -r pypitest
25
+ (pypi suggest using twine as other methods upload files via plaintext.)
26
+
27
+ Check that you can install it in a virtualenv by running:
28
+ pip install -i https://testpypi.python.org/pypi allennlp
29
+
30
+ 6. Upload the final version to actual pypi:
31
+ twine upload dist/* -r pypi
32
+
33
+ 7. Copy the release notes from RELEASE.md to the tag in github once everything is looking hunky-dory.
34
+
35
+ """
36
+ from io import open
37
+ from setuptools import find_packages, setup
38
+
39
+ setup(
40
+ name="pytorch_pretrained_biggan",
41
+ version="0.1.0",
42
+ author="Thomas Wolf",
43
+ author_email="thomas@huggingface.co",
44
+ description="PyTorch version of DeepMind's BigGAN model with pre-trained models",
45
+ long_description=open("README.md", "r", encoding='utf-8').read(),
46
+ long_description_content_type="text/markdown",
47
+ keywords='BIGGAN GAN deep learning google deepmind',
48
+ license='Apache',
49
+ url="https://github.com/huggingface/pytorch-pretrained-BigGAN",
50
+ packages=find_packages(exclude=["*.tests", "*.tests.*",
51
+ "tests.*", "tests"]),
52
+ install_requires=['torch>=0.4.1',
53
+ 'numpy',
54
+ 'boto3',
55
+ 'requests',
56
+ 'tqdm'],
57
+ tests_require=['pytest'],
58
+ entry_points={
59
+ 'console_scripts': [
60
+ "pytorch_pretrained_biggan=pytorch_pretrained_biggan.convert_tf_to_pytorch:main",
61
+ ]
62
+ },
63
+ classifiers=[
64
+ 'Intended Audience :: Science/Research',
65
+ 'License :: OSI Approved :: Apache Software License',
66
+ 'Programming Language :: Python :: 3',
67
+ 'Topic :: Scientific/Engineering :: Artificial Intelligence',
68
+ ],
69
+ )
models/stylegan/__init__.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 Erik Härkönen. All rights reserved.
2
+ # This file is licensed to you under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License. You may obtain a copy
4
+ # of the License at http://www.apache.org/licenses/LICENSE-2.0
5
+
6
+ # Unless required by applicable law or agreed to in writing, software distributed under
7
+ # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS
8
+ # OF ANY KIND, either express or implied. See the License for the specific language
9
+ # governing permissions and limitations under the License.
10
+
11
+ from pathlib import Path
12
+ import sys
13
+
14
+ #module_path = Path(__file__).parent / 'pytorch_biggan'
15
+ #sys.path.append(str(module_path.resolve()))
16
+
17
+ from .model import StyleGAN_G, NoiseLayer
models/stylegan/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (289 Bytes). View file
 
models/stylegan/__pycache__/model.cpython-310.pyc ADDED
Binary file (16.4 kB). View file
 
models/stylegan/model.py ADDED
@@ -0,0 +1,456 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 Erik Härkönen. All rights reserved.
2
+ # This file is licensed to you under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License. You may obtain a copy
4
+ # of the License at http://www.apache.org/licenses/LICENSE-2.0
5
+
6
+ # Unless required by applicable law or agreed to in writing, software distributed under
7
+ # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS
8
+ # OF ANY KIND, either express or implied. See the License for the specific language
9
+ # governing permissions and limitations under the License.
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.functional as F
14
+
15
+ from collections import OrderedDict
16
+ from pathlib import Path
17
+ import requests
18
+ import pickle
19
+ import sys
20
+
21
+ import numpy as np
22
+
23
+ # Reimplementation of StyleGAN in PyTorch
24
+ # Source: https://github.com/lernapparat/lernapparat/blob/master/style_gan/pytorch_style_gan.ipynb
25
+
26
+ class MyLinear(nn.Module):
27
+ """Linear layer with equalized learning rate and custom learning rate multiplier."""
28
+ def __init__(self, input_size, output_size, gain=2**(0.5), use_wscale=False, lrmul=1, bias=True):
29
+ super().__init__()
30
+ he_std = gain * input_size**(-0.5) # He init
31
+ # Equalized learning rate and custom learning rate multiplier.
32
+ if use_wscale:
33
+ init_std = 1.0 / lrmul
34
+ self.w_mul = he_std * lrmul
35
+ else:
36
+ init_std = he_std / lrmul
37
+ self.w_mul = lrmul
38
+ self.weight = torch.nn.Parameter(torch.randn(output_size, input_size) * init_std)
39
+ if bias:
40
+ self.bias = torch.nn.Parameter(torch.zeros(output_size))
41
+ self.b_mul = lrmul
42
+ else:
43
+ self.bias = None
44
+
45
+ def forward(self, x):
46
+ bias = self.bias
47
+ if bias is not None:
48
+ bias = bias * self.b_mul
49
+ return F.linear(x, self.weight * self.w_mul, bias)
50
+
51
+ class MyConv2d(nn.Module):
52
+ """Conv layer with equalized learning rate and custom learning rate multiplier."""
53
+ def __init__(self, input_channels, output_channels, kernel_size, gain=2**(0.5), use_wscale=False, lrmul=1, bias=True,
54
+ intermediate=None, upscale=False):
55
+ super().__init__()
56
+ if upscale:
57
+ self.upscale = Upscale2d()
58
+ else:
59
+ self.upscale = None
60
+ he_std = gain * (input_channels * kernel_size ** 2) ** (-0.5) # He init
61
+ self.kernel_size = kernel_size
62
+ if use_wscale:
63
+ init_std = 1.0 / lrmul
64
+ self.w_mul = he_std * lrmul
65
+ else:
66
+ init_std = he_std / lrmul
67
+ self.w_mul = lrmul
68
+ self.weight = torch.nn.Parameter(torch.randn(output_channels, input_channels, kernel_size, kernel_size) * init_std)
69
+ if bias:
70
+ self.bias = torch.nn.Parameter(torch.zeros(output_channels))
71
+ self.b_mul = lrmul
72
+ else:
73
+ self.bias = None
74
+ self.intermediate = intermediate
75
+
76
+ def forward(self, x):
77
+ bias = self.bias
78
+ if bias is not None:
79
+ bias = bias * self.b_mul
80
+
81
+ have_convolution = False
82
+ if self.upscale is not None and min(x.shape[2:]) * 2 >= 128:
83
+ # this is the fused upscale + conv from StyleGAN, sadly this seems incompatible with the non-fused way
84
+ # this really needs to be cleaned up and go into the conv...
85
+ w = self.weight * self.w_mul
86
+ w = w.permute(1, 0, 2, 3)
87
+ # probably applying a conv on w would be more efficient. also this quadruples the weight (average)?!
88
+ w = F.pad(w, (1,1,1,1))
89
+ w = w[:, :, 1:, 1:]+ w[:, :, :-1, 1:] + w[:, :, 1:, :-1] + w[:, :, :-1, :-1]
90
+ x = F.conv_transpose2d(x, w, stride=2, padding=(w.size(-1)-1)//2)
91
+ have_convolution = True
92
+ elif self.upscale is not None:
93
+ x = self.upscale(x)
94
+
95
+ if not have_convolution and self.intermediate is None:
96
+ return F.conv2d(x, self.weight * self.w_mul, bias, padding=self.kernel_size//2)
97
+ elif not have_convolution:
98
+ x = F.conv2d(x, self.weight * self.w_mul, None, padding=self.kernel_size//2)
99
+
100
+ if self.intermediate is not None:
101
+ x = self.intermediate(x)
102
+ if bias is not None:
103
+ x = x + bias.view(1, -1, 1, 1)
104
+ return x
105
+
106
+ class NoiseLayer(nn.Module):
107
+ """adds noise. noise is per pixel (constant over channels) with per-channel weight"""
108
+ def __init__(self, channels):
109
+ super().__init__()
110
+ self.weight = nn.Parameter(torch.zeros(channels))
111
+ self.noise = None
112
+
113
+ def forward(self, x, noise=None):
114
+ if noise is None and self.noise is None:
115
+ noise = torch.randn(x.size(0), 1, x.size(2), x.size(3), device=x.device, dtype=x.dtype)
116
+ elif noise is None:
117
+ # here is a little trick: if you get all the noiselayers and set each
118
+ # modules .noise attribute, you can have pre-defined noise.
119
+ # Very useful for analysis
120
+ noise = self.noise
121
+ x = x + self.weight.view(1, -1, 1, 1) * noise
122
+ return x
123
+
124
+ class StyleMod(nn.Module):
125
+ def __init__(self, latent_size, channels, use_wscale):
126
+ super(StyleMod, self).__init__()
127
+ self.lin = MyLinear(latent_size,
128
+ channels * 2,
129
+ gain=1.0, use_wscale=use_wscale)
130
+
131
+ def forward(self, x, latent):
132
+ style = self.lin(latent) # style => [batch_size, n_channels*2]
133
+ shape = [-1, 2, x.size(1)] + (x.dim() - 2) * [1]
134
+ style = style.view(shape) # [batch_size, 2, n_channels, ...]
135
+ x = x * (style[:, 0] + 1.) + style[:, 1]
136
+ return x
137
+
138
+ class PixelNormLayer(nn.Module):
139
+ def __init__(self, epsilon=1e-8):
140
+ super().__init__()
141
+ self.epsilon = epsilon
142
+ def forward(self, x):
143
+ return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + self.epsilon)
144
+
145
+ class BlurLayer(nn.Module):
146
+ def __init__(self, kernel=[1, 2, 1], normalize=True, flip=False, stride=1):
147
+ super(BlurLayer, self).__init__()
148
+ kernel=[1, 2, 1]
149
+ kernel = torch.tensor(kernel, dtype=torch.float32)
150
+ kernel = kernel[:, None] * kernel[None, :]
151
+ kernel = kernel[None, None]
152
+ if normalize:
153
+ kernel = kernel / kernel.sum()
154
+ if flip:
155
+ kernel = kernel[:, :, ::-1, ::-1]
156
+ self.register_buffer('kernel', kernel)
157
+ self.stride = stride
158
+
159
+ def forward(self, x):
160
+ # expand kernel channels
161
+ kernel = self.kernel.expand(x.size(1), -1, -1, -1)
162
+ x = F.conv2d(
163
+ x,
164
+ kernel,
165
+ stride=self.stride,
166
+ padding=int((self.kernel.size(2)-1)/2),
167
+ groups=x.size(1)
168
+ )
169
+ return x
170
+
171
+ def upscale2d(x, factor=2, gain=1):
172
+ assert x.dim() == 4
173
+ if gain != 1:
174
+ x = x * gain
175
+ if factor != 1:
176
+ shape = x.shape
177
+ x = x.view(shape[0], shape[1], shape[2], 1, shape[3], 1).expand(-1, -1, -1, factor, -1, factor)
178
+ x = x.contiguous().view(shape[0], shape[1], factor * shape[2], factor * shape[3])
179
+ return x
180
+
181
+ class Upscale2d(nn.Module):
182
+ def __init__(self, factor=2, gain=1):
183
+ super().__init__()
184
+ assert isinstance(factor, int) and factor >= 1
185
+ self.gain = gain
186
+ self.factor = factor
187
+ def forward(self, x):
188
+ return upscale2d(x, factor=self.factor, gain=self.gain)
189
+
190
+ class G_mapping(nn.Sequential):
191
+ def __init__(self, nonlinearity='lrelu', use_wscale=True):
192
+ act, gain = {'relu': (torch.relu, np.sqrt(2)),
193
+ 'lrelu': (nn.LeakyReLU(negative_slope=0.2), np.sqrt(2))}[nonlinearity]
194
+ layers = [
195
+ ('pixel_norm', PixelNormLayer()),
196
+ ('dense0', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
197
+ ('dense0_act', act),
198
+ ('dense1', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
199
+ ('dense1_act', act),
200
+ ('dense2', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
201
+ ('dense2_act', act),
202
+ ('dense3', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
203
+ ('dense3_act', act),
204
+ ('dense4', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
205
+ ('dense4_act', act),
206
+ ('dense5', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
207
+ ('dense5_act', act),
208
+ ('dense6', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
209
+ ('dense6_act', act),
210
+ ('dense7', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
211
+ ('dense7_act', act)
212
+ ]
213
+ super().__init__(OrderedDict(layers))
214
+
215
+ def forward(self, x):
216
+ return super().forward(x)
217
+
218
+ class Truncation(nn.Module):
219
+ def __init__(self, avg_latent, max_layer=8, threshold=0.7):
220
+ super().__init__()
221
+ self.max_layer = max_layer
222
+ self.threshold = threshold
223
+ self.register_buffer('avg_latent', avg_latent)
224
+ def forward(self, x):
225
+ assert x.dim() == 3
226
+ interp = torch.lerp(self.avg_latent, x, self.threshold)
227
+ do_trunc = (torch.arange(x.size(1)) < self.max_layer).view(1, -1, 1)
228
+ return torch.where(do_trunc, interp, x)
229
+
230
+ class LayerEpilogue(nn.Module):
231
+ """Things to do at the end of each layer."""
232
+ def __init__(self, channels, dlatent_size, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer):
233
+ super().__init__()
234
+ layers = []
235
+ if use_noise:
236
+ layers.append(('noise', NoiseLayer(channels)))
237
+ layers.append(('activation', activation_layer))
238
+ if use_pixel_norm:
239
+ layers.append(('pixel_norm', PixelNorm()))
240
+ if use_instance_norm:
241
+ layers.append(('instance_norm', nn.InstanceNorm2d(channels)))
242
+ self.top_epi = nn.Sequential(OrderedDict(layers))
243
+ if use_styles:
244
+ self.style_mod = StyleMod(dlatent_size, channels, use_wscale=use_wscale)
245
+ else:
246
+ self.style_mod = None
247
+ def forward(self, x, dlatents_in_slice=None):
248
+ x = self.top_epi(x)
249
+ if self.style_mod is not None:
250
+ x = self.style_mod(x, dlatents_in_slice)
251
+ else:
252
+ assert dlatents_in_slice is None
253
+ return x
254
+
255
+
256
+ class InputBlock(nn.Module):
257
+ def __init__(self, nf, dlatent_size, const_input_layer, gain, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer):
258
+ super().__init__()
259
+ self.const_input_layer = const_input_layer
260
+ self.nf = nf
261
+ if self.const_input_layer:
262
+ # called 'const' in tf
263
+ self.const = nn.Parameter(torch.ones(1, nf, 4, 4))
264
+ self.bias = nn.Parameter(torch.ones(nf))
265
+ else:
266
+ self.dense = MyLinear(dlatent_size, nf*16, gain=gain/4, use_wscale=use_wscale) # tweak gain to match the official implementation of Progressing GAN
267
+ self.epi1 = LayerEpilogue(nf, dlatent_size, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer)
268
+ self.conv = MyConv2d(nf, nf, 3, gain=gain, use_wscale=use_wscale)
269
+ self.epi2 = LayerEpilogue(nf, dlatent_size, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer)
270
+
271
+ def forward(self, dlatents_in_range):
272
+ batch_size = dlatents_in_range.size(0)
273
+ if self.const_input_layer:
274
+ x = self.const.expand(batch_size, -1, -1, -1)
275
+ x = x + self.bias.view(1, -1, 1, 1)
276
+ else:
277
+ x = self.dense(dlatents_in_range[:, 0]).view(batch_size, self.nf, 4, 4)
278
+ x = self.epi1(x, dlatents_in_range[:, 0])
279
+ x = self.conv(x)
280
+ x = self.epi2(x, dlatents_in_range[:, 1])
281
+ return x
282
+
283
+
284
+ class GSynthesisBlock(nn.Module):
285
+ def __init__(self, in_channels, out_channels, blur_filter, dlatent_size, gain, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer):
286
+ # 2**res x 2**res # res = 3..resolution_log2
287
+ super().__init__()
288
+ if blur_filter:
289
+ blur = BlurLayer(blur_filter)
290
+ else:
291
+ blur = None
292
+ self.conv0_up = MyConv2d(in_channels, out_channels, kernel_size=3, gain=gain, use_wscale=use_wscale,
293
+ intermediate=blur, upscale=True)
294
+ self.epi1 = LayerEpilogue(out_channels, dlatent_size, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer)
295
+ self.conv1 = MyConv2d(out_channels, out_channels, kernel_size=3, gain=gain, use_wscale=use_wscale)
296
+ self.epi2 = LayerEpilogue(out_channels, dlatent_size, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer)
297
+
298
+ def forward(self, x, dlatents_in_range):
299
+ x = self.conv0_up(x)
300
+ x = self.epi1(x, dlatents_in_range[:, 0])
301
+ x = self.conv1(x)
302
+ x = self.epi2(x, dlatents_in_range[:, 1])
303
+ return x
304
+
305
+ class G_synthesis(nn.Module):
306
+ def __init__(self,
307
+ dlatent_size = 512, # Disentangled latent (W) dimensionality.
308
+ num_channels = 3, # Number of output color channels.
309
+ resolution = 1024, # Output resolution.
310
+ fmap_base = 8192, # Overall multiplier for the number of feature maps.
311
+ fmap_decay = 1.0, # log2 feature map reduction when doubling the resolution.
312
+ fmap_max = 512, # Maximum number of feature maps in any layer.
313
+ use_styles = True, # Enable style inputs?
314
+ const_input_layer = True, # First layer is a learned constant?
315
+ use_noise = True, # Enable noise inputs?
316
+ randomize_noise = True, # True = randomize noise inputs every time (non-deterministic), False = read noise inputs from variables.
317
+ nonlinearity = 'lrelu', # Activation function: 'relu', 'lrelu'
318
+ use_wscale = True, # Enable equalized learning rate?
319
+ use_pixel_norm = False, # Enable pixelwise feature vector normalization?
320
+ use_instance_norm = True, # Enable instance normalization?
321
+ dtype = torch.float32, # Data type to use for activations and outputs.
322
+ blur_filter = [1,2,1], # Low-pass filter to apply when resampling activations. None = no filtering.
323
+ ):
324
+
325
+ super().__init__()
326
+ def nf(stage):
327
+ return min(int(fmap_base / (2.0 ** (stage * fmap_decay))), fmap_max)
328
+ self.dlatent_size = dlatent_size
329
+ resolution_log2 = int(np.log2(resolution))
330
+ assert resolution == 2**resolution_log2 and resolution >= 4
331
+
332
+ act, gain = {'relu': (torch.relu, np.sqrt(2)),
333
+ 'lrelu': (nn.LeakyReLU(negative_slope=0.2), np.sqrt(2))}[nonlinearity]
334
+ num_layers = resolution_log2 * 2 - 2
335
+ num_styles = num_layers if use_styles else 1
336
+ torgbs = []
337
+ blocks = []
338
+ for res in range(2, resolution_log2 + 1):
339
+ channels = nf(res-1)
340
+ name = '{s}x{s}'.format(s=2**res)
341
+ if res == 2:
342
+ blocks.append((name,
343
+ InputBlock(channels, dlatent_size, const_input_layer, gain, use_wscale,
344
+ use_noise, use_pixel_norm, use_instance_norm, use_styles, act)))
345
+
346
+ else:
347
+ blocks.append((name,
348
+ GSynthesisBlock(last_channels, channels, blur_filter, dlatent_size, gain, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, act)))
349
+ last_channels = channels
350
+ self.torgb = MyConv2d(channels, num_channels, 1, gain=1, use_wscale=use_wscale)
351
+ self.blocks = nn.ModuleDict(OrderedDict(blocks))
352
+
353
+ def forward(self, dlatents_in):
354
+ # Input: Disentangled latents (W) [minibatch, num_layers, dlatent_size].
355
+ # lod_in = tf.cast(tf.get_variable('lod', initializer=np.float32(0), trainable=False), dtype)
356
+ batch_size = dlatents_in.size(0)
357
+ for i, m in enumerate(self.blocks.values()):
358
+ if i == 0:
359
+ x = m(dlatents_in[:, 2*i:2*i+2])
360
+ else:
361
+ x = m(x, dlatents_in[:, 2*i:2*i+2])
362
+ rgb = self.torgb(x)
363
+ return rgb
364
+
365
+
366
+ class StyleGAN_G(nn.Sequential):
367
+ def __init__(self, resolution, truncation=1.0):
368
+ self.resolution = resolution
369
+ self.layers = OrderedDict([
370
+ ('g_mapping', G_mapping()),
371
+ #('truncation', Truncation(avg_latent)),
372
+ ('g_synthesis', G_synthesis(resolution=resolution)),
373
+ ])
374
+ super().__init__(self.layers)
375
+
376
+ def forward(self, x, latent_is_w=False):
377
+ if isinstance(x, list):
378
+ assert len(x) == 18, 'Must provide 1 or 18 latents'
379
+ if not latent_is_w:
380
+ x = [self.layers['g_mapping'].forward(l) for l in x]
381
+ x = torch.stack(x, dim=1)
382
+ else:
383
+ if not latent_is_w:
384
+ x = self.layers['g_mapping'].forward(x)
385
+ x = x.unsqueeze(1).expand(-1, 18, -1)
386
+
387
+ x = self.layers['g_synthesis'].forward(x)
388
+
389
+ return x
390
+
391
+ # From: https://github.com/lernapparat/lernapparat/releases/download/v2019-02-01/
392
+ def load_weights(self, checkpoint):
393
+ self.load_state_dict(torch.load(checkpoint))
394
+
395
+ def export_from_tf(self, pickle_path):
396
+ module_path = Path(__file__).parent / 'stylegan_tf'
397
+ sys.path.append(str(module_path.resolve()))
398
+
399
+ import dnnlib, dnnlib.tflib, pickle, torch, collections
400
+ dnnlib.tflib.init_tf()
401
+
402
+ weights = pickle.load(open(pickle_path,'rb'))
403
+ weights_pt = [collections.OrderedDict([(k, torch.from_numpy(v.value().eval())) for k,v in w.trainables.items()]) for w in weights]
404
+ #torch.save(weights_pt, pytorch_name)
405
+
406
+ # then on the PyTorch side run
407
+ state_G, state_D, state_Gs = weights_pt #torch.load('./karras2019stylegan-ffhq-1024x1024.pt')
408
+ def key_translate(k):
409
+ k = k.lower().split('/')
410
+ if k[0] == 'g_synthesis':
411
+ if not k[1].startswith('torgb'):
412
+ k.insert(1, 'blocks')
413
+ k = '.'.join(k)
414
+ k = (k.replace('const.const','const').replace('const.bias','bias').replace('const.stylemod','epi1.style_mod.lin')
415
+ .replace('const.noise.weight','epi1.top_epi.noise.weight')
416
+ .replace('conv.noise.weight','epi2.top_epi.noise.weight')
417
+ .replace('conv.stylemod','epi2.style_mod.lin')
418
+ .replace('conv0_up.noise.weight', 'epi1.top_epi.noise.weight')
419
+ .replace('conv0_up.stylemod','epi1.style_mod.lin')
420
+ .replace('conv1.noise.weight', 'epi2.top_epi.noise.weight')
421
+ .replace('conv1.stylemod','epi2.style_mod.lin')
422
+ .replace('torgb_lod0','torgb'))
423
+ else:
424
+ k = '.'.join(k)
425
+ return k
426
+
427
+ def weight_translate(k, w):
428
+ k = key_translate(k)
429
+ if k.endswith('.weight'):
430
+ if w.dim() == 2:
431
+ w = w.t()
432
+ elif w.dim() == 1:
433
+ pass
434
+ else:
435
+ assert w.dim() == 4
436
+ w = w.permute(3, 2, 0, 1)
437
+ return w
438
+
439
+ # we delete the useless torgb filters
440
+ param_dict = {key_translate(k) : weight_translate(k, v) for k,v in state_Gs.items() if 'torgb_lod' not in key_translate(k)}
441
+ if 1:
442
+ sd_shapes = {k : v.shape for k,v in self.state_dict().items()}
443
+ param_shapes = {k : v.shape for k,v in param_dict.items() }
444
+
445
+ for k in list(sd_shapes)+list(param_shapes):
446
+ pds = param_shapes.get(k)
447
+ sds = sd_shapes.get(k)
448
+ if pds is None:
449
+ print ("sd only", k, sds)
450
+ elif sds is None:
451
+ print ("pd only", k, pds)
452
+ elif sds != pds:
453
+ print ("mismatch!", k, pds, sds)
454
+
455
+ self.load_state_dict(param_dict, strict=False) # needed for the blur kernels
456
+ torch.save(self.state_dict(), Path(pickle_path).with_suffix('.pt'))
models/stylegan/stylegan_tf/LICENSE.txt ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2
+
3
+
4
+ Attribution-NonCommercial 4.0 International
5
+
6
+ =======================================================================
7
+
8
+ Creative Commons Corporation ("Creative Commons") is not a law firm and
9
+ does not provide legal services or legal advice. Distribution of
10
+ Creative Commons public licenses does not create a lawyer-client or
11
+ other relationship. Creative Commons makes its licenses and related
12
+ information available on an "as-is" basis. Creative Commons gives no
13
+ warranties regarding its licenses, any material licensed under their
14
+ terms and conditions, or any related information. Creative Commons
15
+ disclaims all liability for damages resulting from their use to the
16
+ fullest extent possible.
17
+
18
+ Using Creative Commons Public Licenses
19
+
20
+ Creative Commons public licenses provide a standard set of terms and
21
+ conditions that creators and other rights holders may use to share
22
+ original works of authorship and other material subject to copyright
23
+ and certain other rights specified in the public license below. The
24
+ following considerations are for informational purposes only, are not
25
+ exhaustive, and do not form part of our licenses.
26
+
27
+ Considerations for licensors: Our public licenses are
28
+ intended for use by those authorized to give the public
29
+ permission to use material in ways otherwise restricted by
30
+ copyright and certain other rights. Our licenses are
31
+ irrevocable. Licensors should read and understand the terms
32
+ and conditions of the license they choose before applying it.
33
+ Licensors should also secure all rights necessary before
34
+ applying our licenses so that the public can reuse the
35
+ material as expected. Licensors should clearly mark any
36
+ material not subject to the license. This includes other CC-
37
+ licensed material, or material used under an exception or
38
+ limitation to copyright. More considerations for licensors:
39
+ wiki.creativecommons.org/Considerations_for_licensors
40
+
41
+ Considerations for the public: By using one of our public
42
+ licenses, a licensor grants the public permission to use the
43
+ licensed material under specified terms and conditions. If
44
+ the licensor's permission is not necessary for any reason--for
45
+ example, because of any applicable exception or limitation to
46
+ copyright--then that use is not regulated by the license. Our
47
+ licenses grant only permissions under copyright and certain
48
+ other rights that a licensor has authority to grant. Use of
49
+ the licensed material may still be restricted for other
50
+ reasons, including because others have copyright or other
51
+ rights in the material. A licensor may make special requests,
52
+ such as asking that all changes be marked or described.
53
+ Although not required by our licenses, you are encouraged to
54
+ respect those requests where reasonable. More_considerations
55
+ for the public:
56
+ wiki.creativecommons.org/Considerations_for_licensees
57
+
58
+ =======================================================================
59
+
60
+ Creative Commons Attribution-NonCommercial 4.0 International Public
61
+ License
62
+
63
+ By exercising the Licensed Rights (defined below), You accept and agree
64
+ to be bound by the terms and conditions of this Creative Commons
65
+ Attribution-NonCommercial 4.0 International Public License ("Public
66
+ License"). To the extent this Public License may be interpreted as a
67
+ contract, You are granted the Licensed Rights in consideration of Your
68
+ acceptance of these terms and conditions, and the Licensor grants You
69
+ such rights in consideration of benefits the Licensor receives from
70
+ making the Licensed Material available under these terms and
71
+ conditions.
72
+
73
+
74
+ Section 1 -- Definitions.
75
+
76
+ a. Adapted Material means material subject to Copyright and Similar
77
+ Rights that is derived from or based upon the Licensed Material
78
+ and in which the Licensed Material is translated, altered,
79
+ arranged, transformed, or otherwise modified in a manner requiring
80
+ permission under the Copyright and Similar Rights held by the
81
+ Licensor. For purposes of this Public License, where the Licensed
82
+ Material is a musical work, performance, or sound recording,
83
+ Adapted Material is always produced where the Licensed Material is
84
+ synched in timed relation with a moving image.
85
+
86
+ b. Adapter's License means the license You apply to Your Copyright
87
+ and Similar Rights in Your contributions to Adapted Material in
88
+ accordance with the terms and conditions of this Public License.
89
+
90
+ c. Copyright and Similar Rights means copyright and/or similar rights
91
+ closely related to copyright including, without limitation,
92
+ performance, broadcast, sound recording, and Sui Generis Database
93
+ Rights, without regard to how the rights are labeled or
94
+ categorized. For purposes of this Public License, the rights
95
+ specified in Section 2(b)(1)-(2) are not Copyright and Similar
96
+ Rights.
97
+ d. Effective Technological Measures means those measures that, in the
98
+ absence of proper authority, may not be circumvented under laws
99
+ fulfilling obligations under Article 11 of the WIPO Copyright
100
+ Treaty adopted on December 20, 1996, and/or similar international
101
+ agreements.
102
+
103
+ e. Exceptions and Limitations means fair use, fair dealing, and/or
104
+ any other exception or limitation to Copyright and Similar Rights
105
+ that applies to Your use of the Licensed Material.
106
+
107
+ f. Licensed Material means the artistic or literary work, database,
108
+ or other material to which the Licensor applied this Public
109
+ License.
110
+
111
+ g. Licensed Rights means the rights granted to You subject to the
112
+ terms and conditions of this Public License, which are limited to
113
+ all Copyright and Similar Rights that apply to Your use of the
114
+ Licensed Material and that the Licensor has authority to license.
115
+
116
+ h. Licensor means the individual(s) or entity(ies) granting rights
117
+ under this Public License.
118
+
119
+ i. NonCommercial means not primarily intended for or directed towards
120
+ commercial advantage or monetary compensation. For purposes of
121
+ this Public License, the exchange of the Licensed Material for
122
+ other material subject to Copyright and Similar Rights by digital
123
+ file-sharing or similar means is NonCommercial provided there is
124
+ no payment of monetary compensation in connection with the
125
+ exchange.
126
+
127
+ j. Share means to provide material to the public by any means or
128
+ process that requires permission under the Licensed Rights, such
129
+ as reproduction, public display, public performance, distribution,
130
+ dissemination, communication, or importation, and to make material
131
+ available to the public including in ways that members of the
132
+ public may access the material from a place and at a time
133
+ individually chosen by them.
134
+
135
+ k. Sui Generis Database Rights means rights other than copyright
136
+ resulting from Directive 96/9/EC of the European Parliament and of
137
+ the Council of 11 March 1996 on the legal protection of databases,
138
+ as amended and/or succeeded, as well as other essentially
139
+ equivalent rights anywhere in the world.
140
+
141
+ l. You means the individual or entity exercising the Licensed Rights
142
+ under this Public License. Your has a corresponding meaning.
143
+
144
+
145
+ Section 2 -- Scope.
146
+
147
+ a. License grant.
148
+
149
+ 1. Subject to the terms and conditions of this Public License,
150
+ the Licensor hereby grants You a worldwide, royalty-free,
151
+ non-sublicensable, non-exclusive, irrevocable license to
152
+ exercise the Licensed Rights in the Licensed Material to:
153
+
154
+ a. reproduce and Share the Licensed Material, in whole or
155
+ in part, for NonCommercial purposes only; and
156
+
157
+ b. produce, reproduce, and Share Adapted Material for
158
+ NonCommercial purposes only.
159
+
160
+ 2. Exceptions and Limitations. For the avoidance of doubt, where
161
+ Exceptions and Limitations apply to Your use, this Public
162
+ License does not apply, and You do not need to comply with
163
+ its terms and conditions.
164
+
165
+ 3. Term. The term of this Public License is specified in Section
166
+ 6(a).
167
+
168
+ 4. Media and formats; technical modifications allowed. The
169
+ Licensor authorizes You to exercise the Licensed Rights in
170
+ all media and formats whether now known or hereafter created,
171
+ and to make technical modifications necessary to do so. The
172
+ Licensor waives and/or agrees not to assert any right or
173
+ authority to forbid You from making technical modifications
174
+ necessary to exercise the Licensed Rights, including
175
+ technical modifications necessary to circumvent Effective
176
+ Technological Measures. For purposes of this Public License,
177
+ simply making modifications authorized by this Section 2(a)
178
+ (4) never produces Adapted Material.
179
+
180
+ 5. Downstream recipients.
181
+
182
+ a. Offer from the Licensor -- Licensed Material. Every
183
+ recipient of the Licensed Material automatically
184
+ receives an offer from the Licensor to exercise the
185
+ Licensed Rights under the terms and conditions of this
186
+ Public License.
187
+
188
+ b. No downstream restrictions. You may not offer or impose
189
+ any additional or different terms or conditions on, or
190
+ apply any Effective Technological Measures to, the
191
+ Licensed Material if doing so restricts exercise of the
192
+ Licensed Rights by any recipient of the Licensed
193
+ Material.
194
+
195
+ 6. No endorsement. Nothing in this Public License constitutes or
196
+ may be construed as permission to assert or imply that You
197
+ are, or that Your use of the Licensed Material is, connected
198
+ with, or sponsored, endorsed, or granted official status by,
199
+ the Licensor or others designated to receive attribution as
200
+ provided in Section 3(a)(1)(A)(i).
201
+
202
+ b. Other rights.
203
+
204
+ 1. Moral rights, such as the right of integrity, are not
205
+ licensed under this Public License, nor are publicity,
206
+ privacy, and/or other similar personality rights; however, to
207
+ the extent possible, the Licensor waives and/or agrees not to
208
+ assert any such rights held by the Licensor to the limited
209
+ extent necessary to allow You to exercise the Licensed
210
+ Rights, but not otherwise.
211
+
212
+ 2. Patent and trademark rights are not licensed under this
213
+ Public License.
214
+
215
+ 3. To the extent possible, the Licensor waives any right to
216
+ collect royalties from You for the exercise of the Licensed
217
+ Rights, whether directly or through a collecting society
218
+ under any voluntary or waivable statutory or compulsory
219
+ licensing scheme. In all other cases the Licensor expressly
220
+ reserves any right to collect such royalties, including when
221
+ the Licensed Material is used other than for NonCommercial
222
+ purposes.
223
+
224
+
225
+ Section 3 -- License Conditions.
226
+
227
+ Your exercise of the Licensed Rights is expressly made subject to the
228
+ following conditions.
229
+
230
+ a. Attribution.
231
+
232
+ 1. If You Share the Licensed Material (including in modified
233
+ form), You must:
234
+
235
+ a. retain the following if it is supplied by the Licensor
236
+ with the Licensed Material:
237
+
238
+ i. identification of the creator(s) of the Licensed
239
+ Material and any others designated to receive
240
+ attribution, in any reasonable manner requested by
241
+ the Licensor (including by pseudonym if
242
+ designated);
243
+
244
+ ii. a copyright notice;
245
+
246
+ iii. a notice that refers to this Public License;
247
+
248
+ iv. a notice that refers to the disclaimer of
249
+ warranties;
250
+
251
+ v. a URI or hyperlink to the Licensed Material to the
252
+ extent reasonably practicable;
253
+
254
+ b. indicate if You modified the Licensed Material and
255
+ retain an indication of any previous modifications; and
256
+
257
+ c. indicate the Licensed Material is licensed under this
258
+ Public License, and include the text of, or the URI or
259
+ hyperlink to, this Public License.
260
+
261
+ 2. You may satisfy the conditions in Section 3(a)(1) in any
262
+ reasonable manner based on the medium, means, and context in
263
+ which You Share the Licensed Material. For example, it may be
264
+ reasonable to satisfy the conditions by providing a URI or
265
+ hyperlink to a resource that includes the required
266
+ information.
267
+
268
+ 3. If requested by the Licensor, You must remove any of the
269
+ information required by Section 3(a)(1)(A) to the extent
270
+ reasonably practicable.
271
+
272
+ 4. If You Share Adapted Material You produce, the Adapter's
273
+ License You apply must not prevent recipients of the Adapted
274
+ Material from complying with this Public License.
275
+
276
+
277
+ Section 4 -- Sui Generis Database Rights.
278
+
279
+ Where the Licensed Rights include Sui Generis Database Rights that
280
+ apply to Your use of the Licensed Material:
281
+
282
+ a. for the avoidance of doubt, Section 2(a)(1) grants You the right
283
+ to extract, reuse, reproduce, and Share all or a substantial
284
+ portion of the contents of the database for NonCommercial purposes
285
+ only;
286
+
287
+ b. if You include all or a substantial portion of the database
288
+ contents in a database in which You have Sui Generis Database
289
+ Rights, then the database in which You have Sui Generis Database
290
+ Rights (but not its individual contents) is Adapted Material; and
291
+
292
+ c. You must comply with the conditions in Section 3(a) if You Share
293
+ all or a substantial portion of the contents of the database.
294
+
295
+ For the avoidance of doubt, this Section 4 supplements and does not
296
+ replace Your obligations under this Public License where the Licensed
297
+ Rights include other Copyright and Similar Rights.
298
+
299
+
300
+ Section 5 -- Disclaimer of Warranties and Limitation of Liability.
301
+
302
+ a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
303
+ EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
304
+ AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
305
+ ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
306
+ IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
307
+ WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
308
+ PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
309
+ ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
310
+ KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
311
+ ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
312
+
313
+ b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
314
+ TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
315
+ NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
316
+ INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
317
+ COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
318
+ USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
319
+ ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
320
+ DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
321
+ IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
322
+
323
+ c. The disclaimer of warranties and limitation of liability provided
324
+ above shall be interpreted in a manner that, to the extent
325
+ possible, most closely approximates an absolute disclaimer and
326
+ waiver of all liability.
327
+
328
+
329
+ Section 6 -- Term and Termination.
330
+
331
+ a. This Public License applies for the term of the Copyright and
332
+ Similar Rights licensed here. However, if You fail to comply with
333
+ this Public License, then Your rights under this Public License
334
+ terminate automatically.
335
+
336
+ b. Where Your right to use the Licensed Material has terminated under
337
+ Section 6(a), it reinstates:
338
+
339
+ 1. automatically as of the date the violation is cured, provided
340
+ it is cured within 30 days of Your discovery of the
341
+ violation; or
342
+
343
+ 2. upon express reinstatement by the Licensor.
344
+
345
+ For the avoidance of doubt, this Section 6(b) does not affect any
346
+ right the Licensor may have to seek remedies for Your violations
347
+ of this Public License.
348
+
349
+ c. For the avoidance of doubt, the Licensor may also offer the
350
+ Licensed Material under separate terms or conditions or stop
351
+ distributing the Licensed Material at any time; however, doing so
352
+ will not terminate this Public License.
353
+
354
+ d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
355
+ License.
356
+
357
+
358
+ Section 7 -- Other Terms and Conditions.
359
+
360
+ a. The Licensor shall not be bound by any additional or different
361
+ terms or conditions communicated by You unless expressly agreed.
362
+
363
+ b. Any arrangements, understandings, or agreements regarding the
364
+ Licensed Material not stated herein are separate from and
365
+ independent of the terms and conditions of this Public License.
366
+
367
+
368
+ Section 8 -- Interpretation.
369
+
370
+ a. For the avoidance of doubt, this Public License does not, and
371
+ shall not be interpreted to, reduce, limit, restrict, or impose
372
+ conditions on any use of the Licensed Material that could lawfully
373
+ be made without permission under this Public License.
374
+
375
+ b. To the extent possible, if any provision of this Public License is
376
+ deemed unenforceable, it shall be automatically reformed to the
377
+ minimum extent necessary to make it enforceable. If the provision
378
+ cannot be reformed, it shall be severed from this Public License
379
+ without affecting the enforceability of the remaining terms and
380
+ conditions.
381
+
382
+ c. No term or condition of this Public License will be waived and no
383
+ failure to comply consented to unless expressly agreed to by the
384
+ Licensor.
385
+
386
+ d. Nothing in this Public License constitutes or may be interpreted
387
+ as a limitation upon, or waiver of, any privileges and immunities
388
+ that apply to the Licensor or You, including from the legal
389
+ processes of any jurisdiction or authority.
390
+
391
+ =======================================================================
392
+
393
+ Creative Commons is not a party to its public
394
+ licenses. Notwithstanding, Creative Commons may elect to apply one of
395
+ its public licenses to material it publishes and in those instances
396
+ will be considered the "Licensor." The text of the Creative Commons
397
+ public licenses is dedicated to the public domain under the CC0 Public
398
+ Domain Dedication. Except for the limited purpose of indicating that
399
+ material is shared under a Creative Commons public license or as
400
+ otherwise permitted by the Creative Commons policies published at
401
+ creativecommons.org/policies, Creative Commons does not authorize the
402
+ use of the trademark "Creative Commons" or any other trademark or logo
403
+ of Creative Commons without its prior written consent including,
404
+ without limitation, in connection with any unauthorized modifications
405
+ to any of its public licenses or any other arrangements,
406
+ understandings, or agreements concerning use of licensed material. For
407
+ the avoidance of doubt, this paragraph does not form part of the
408
+ public licenses.
409
+
410
+ Creative Commons may be contacted at creativecommons.org.
models/stylegan/stylegan_tf/README.md ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## StyleGAN &mdash; Official TensorFlow Implementation
2
+ ![Python 3.6](https://img.shields.io/badge/python-3.6-green.svg?style=plastic)
3
+ ![TensorFlow 1.10](https://img.shields.io/badge/tensorflow-1.10-green.svg?style=plastic)
4
+ ![cuDNN 7.3.1](https://img.shields.io/badge/cudnn-7.3.1-green.svg?style=plastic)
5
+ ![License CC BY-NC](https://img.shields.io/badge/license-CC_BY--NC-green.svg?style=plastic)
6
+
7
+ ![Teaser image](./stylegan-teaser.png)
8
+ **Picture:** *These people are not real &ndash; they were produced by our generator that allows control over different aspects of the image.*
9
+
10
+ This repository contains the official TensorFlow implementation of the following paper:
11
+
12
+ > **A Style-Based Generator Architecture for Generative Adversarial Networks**<br>
13
+ > Tero Karras (NVIDIA), Samuli Laine (NVIDIA), Timo Aila (NVIDIA)<br>
14
+ > https://arxiv.org/abs/1812.04948
15
+ >
16
+ > **Abstract:** *We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scale-specific control of the synthesis. The new generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. To quantify interpolation quality and disentanglement, we propose two new, automated methods that are applicable to any generator architecture. Finally, we introduce a new, highly varied and high-quality dataset of human faces.*
17
+
18
+ For business inquiries, please contact [researchinquiries@nvidia.com](mailto:researchinquiries@nvidia.com)<br>
19
+ For press and other inquiries, please contact Hector Marinez at [hmarinez@nvidia.com](mailto:hmarinez@nvidia.com)<br>
20
+
21
+ **&#9733;&#9733;&#9733; NEW: StyleGAN2 is available at [https://github.com/NVlabs/stylegan2](https://github.com/NVlabs/stylegan2) &#9733;&#9733;&#9733;**
22
+
23
+ ## Resources
24
+
25
+ Material related to our paper is available via the following links:
26
+
27
+ - Paper: https://arxiv.org/abs/1812.04948
28
+ - Video: https://youtu.be/kSLJriaOumA
29
+ - Code: https://github.com/NVlabs/stylegan
30
+ - FFHQ: https://github.com/NVlabs/ffhq-dataset
31
+
32
+ Additional material can be found on Google Drive:
33
+
34
+ | Path | Description
35
+ | :--- | :----------
36
+ | [StyleGAN](https://drive.google.com/open?id=1uka3a1noXHAydRPRbknqwKVGODvnmUBX) | Main folder.
37
+ | &boxvr;&nbsp; [stylegan-paper.pdf](https://drive.google.com/open?id=1v-HkF3Ehrpon7wVIx4r5DLcko_U_V6Lt) | High-quality version of the paper PDF.
38
+ | &boxvr;&nbsp; [stylegan-video.mp4](https://drive.google.com/open?id=1uzwkZHQX_9pYg1i0d1Nbe3D9xPO8-qBf) | High-quality version of the result video.
39
+ | &boxvr;&nbsp; [images](https://drive.google.com/open?id=1-l46akONUWF6LCpDoeq63H53rD7MeiTd) | Example images produced using our generator.
40
+ | &boxv;&nbsp; &boxvr;&nbsp; [representative-images](https://drive.google.com/open?id=1ToY5P4Vvf5_c3TyUizQ8fckFFoFtBvD8) | High-quality images to be used in articles, blog posts, etc.
41
+ | &boxv;&nbsp; &boxur;&nbsp; [100k-generated-images](https://drive.google.com/open?id=100DJ0QXyG89HZzB4w2Cbyf4xjNK54cQ1) | 100,000 generated images for different amounts of truncation.
42
+ | &boxv;&nbsp; &ensp;&ensp; &boxvr;&nbsp; [ffhq-1024x1024](https://drive.google.com/open?id=14lm8VRN1pr4g_KVe6_LvyDX1PObst6d4) | Generated using Flickr-Faces-HQ dataset at 1024&times;1024.
43
+ | &boxv;&nbsp; &ensp;&ensp; &boxvr;&nbsp; [bedrooms-256x256](https://drive.google.com/open?id=1Vxz9fksw4kgjiHrvHkX4Hze4dyThFW6t) | Generated using LSUN Bedroom dataset at 256&times;256.
44
+ | &boxv;&nbsp; &ensp;&ensp; &boxvr;&nbsp; [cars-512x384](https://drive.google.com/open?id=1MFCvOMdLE2_mpeLPTiDw5dxc2CRuKkzS) | Generated using LSUN Car dataset at 512&times;384.
45
+ | &boxv;&nbsp; &ensp;&ensp; &boxur;&nbsp; [cats-256x256](https://drive.google.com/open?id=1gq-Gj3GRFiyghTPKhp8uDMA9HV_0ZFWQ) | Generated using LSUN Cat dataset at 256&times;256.
46
+ | &boxvr;&nbsp; [videos](https://drive.google.com/open?id=1N8pOd_Bf8v89NGUaROdbD8-ayLPgyRRo) | Example videos produced using our generator.
47
+ | &boxv;&nbsp; &boxur;&nbsp; [high-quality-video-clips](https://drive.google.com/open?id=1NFO7_vH0t98J13ckJYFd7kuaTkyeRJ86) | Individual segments of the result video as high-quality MP4.
48
+ | &boxvr;&nbsp; [ffhq-dataset](https://drive.google.com/open?id=1u2xu7bSrWxrbUxk-dT-UvEJq8IjdmNTP) | Raw data for the [Flickr-Faces-HQ dataset](https://github.com/NVlabs/ffhq-dataset).
49
+ | &boxur;&nbsp; [networks](https://drive.google.com/open?id=1MASQyN5m0voPcx7-9K0r5gObhvvPups7) | Pre-trained networks as pickled instances of [dnnlib.tflib.Network](./dnnlib/tflib/network.py).
50
+ | &ensp;&ensp; &boxvr;&nbsp; [stylegan-ffhq-1024x1024.pkl](https://drive.google.com/uc?id=1MEGjdvVpUsu1jB4zrXZN7Y4kBBOzizDQ) | StyleGAN trained with Flickr-Faces-HQ dataset at 1024&times;1024.
51
+ | &ensp;&ensp; &boxvr;&nbsp; [stylegan-celebahq-1024x1024.pkl](https://drive.google.com/uc?id=1MGqJl28pN4t7SAtSrPdSRJSQJqahkzUf) | StyleGAN trained with CelebA-HQ dataset at 1024&times;1024.
52
+ | &ensp;&ensp; &boxvr;&nbsp; [stylegan-bedrooms-256x256.pkl](https://drive.google.com/uc?id=1MOSKeGF0FJcivpBI7s63V9YHloUTORiF) | StyleGAN trained with LSUN Bedroom dataset at 256&times;256.
53
+ | &ensp;&ensp; &boxvr;&nbsp; [stylegan-cars-512x384.pkl](https://drive.google.com/uc?id=1MJ6iCfNtMIRicihwRorsM3b7mmtmK9c3) | StyleGAN trained with LSUN Car dataset at 512&times;384.
54
+ | &ensp;&ensp; &boxvr;&nbsp; [stylegan-cats-256x256.pkl](https://drive.google.com/uc?id=1MQywl0FNt6lHu8E_EUqnRbviagS7fbiJ) | StyleGAN trained with LSUN Cat dataset at 256&times;256.
55
+ | &ensp;&ensp; &boxur;&nbsp; [metrics](https://drive.google.com/open?id=1MvYdWCBuMfnoYGptRH-AgKLbPTsIQLhl) | Auxiliary networks for the quality and disentanglement metrics.
56
+ | &ensp;&ensp; &ensp;&ensp; &boxvr;&nbsp; [inception_v3_features.pkl](https://drive.google.com/uc?id=1MzTY44rLToO5APn8TZmfR7_ENSe5aZUn) | Standard [Inception-v3](https://arxiv.org/abs/1512.00567) classifier that outputs a raw feature vector.
57
+ | &ensp;&ensp; &ensp;&ensp; &boxvr;&nbsp; [vgg16_zhang_perceptual.pkl](https://drive.google.com/uc?id=1N2-m9qszOeVC9Tq77WxsLnuWwOedQiD2) | Standard [LPIPS](https://arxiv.org/abs/1801.03924) metric to estimate perceptual similarity.
58
+ | &ensp;&ensp; &ensp;&ensp; &boxvr;&nbsp; [celebahq-classifier-00-male.pkl](https://drive.google.com/uc?id=1Q5-AI6TwWhCVM7Muu4tBM7rp5nG_gmCX) | Binary classifier trained to detect a single attribute of CelebA-HQ.
59
+ | &ensp;&ensp; &ensp;&ensp; &boxur;&nbsp;&#x22ef; | Please see the file listing for remaining networks.
60
+
61
+ ## Licenses
62
+
63
+ All material, excluding the Flickr-Faces-HQ dataset, is made available under [Creative Commons BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) license by NVIDIA Corporation. You can **use, redistribute, and adapt** the material for **non-commercial purposes**, as long as you give appropriate credit by **citing our paper** and **indicating any changes** that you've made.
64
+
65
+ For license information regarding the FFHQ dataset, please refer to the [Flickr-Faces-HQ repository](https://github.com/NVlabs/ffhq-dataset).
66
+
67
+ `inception_v3_features.pkl` and `inception_v3_softmax.pkl` are derived from the pre-trained [Inception-v3](https://arxiv.org/abs/1512.00567) network by Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. The network was originally shared under [Apache 2.0](https://github.com/tensorflow/models/blob/master/LICENSE) license on the [TensorFlow Models](https://github.com/tensorflow/models) repository.
68
+
69
+ `vgg16.pkl` and `vgg16_zhang_perceptual.pkl` are derived from the pre-trained [VGG-16](https://arxiv.org/abs/1409.1556) network by Karen Simonyan and Andrew Zisserman. The network was originally shared under [Creative Commons BY 4.0](https://creativecommons.org/licenses/by/4.0/) license on the [Very Deep Convolutional Networks for Large-Scale Visual Recognition](http://www.robots.ox.ac.uk/~vgg/research/very_deep/) project page.
70
+
71
+ `vgg16_zhang_perceptual.pkl` is further derived from the pre-trained [LPIPS](https://arxiv.org/abs/1801.03924) weights by Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The weights were originally shared under [BSD 2-Clause "Simplified" License](https://github.com/richzhang/PerceptualSimilarity/blob/master/LICENSE) on the [PerceptualSimilarity](https://github.com/richzhang/PerceptualSimilarity) repository.
72
+
73
+ ## System requirements
74
+
75
+ * Both Linux and Windows are supported, but we strongly recommend Linux for performance and compatibility reasons.
76
+ * 64-bit Python 3.6 installation. We recommend Anaconda3 with numpy 1.14.3 or newer.
77
+ * TensorFlow 1.10.0 or newer with GPU support.
78
+ * One or more high-end NVIDIA GPUs with at least 11GB of DRAM. We recommend NVIDIA DGX-1 with 8 Tesla V100 GPUs.
79
+ * NVIDIA driver 391.35 or newer, CUDA toolkit 9.0 or newer, cuDNN 7.3.1 or newer.
80
+
81
+ ## Using pre-trained networks
82
+
83
+ A minimal example of using a pre-trained StyleGAN generator is given in [pretrained_example.py](./pretrained_example.py). When executed, the script downloads a pre-trained StyleGAN generator from Google Drive and uses it to generate an image:
84
+
85
+ ```
86
+ > python pretrained_example.py
87
+ Downloading https://drive.google.com/uc?id=1MEGjdvVpUsu1jB4zrXZN7Y4kBBOzizDQ .... done
88
+
89
+ Gs Params OutputShape WeightShape
90
+ --- --- --- ---
91
+ latents_in - (?, 512) -
92
+ ...
93
+ images_out - (?, 3, 1024, 1024) -
94
+ --- --- --- ---
95
+ Total 26219627
96
+
97
+ > ls results
98
+ example.png # https://drive.google.com/uc?id=1UDLT_zb-rof9kKH0GwiJW_bS9MoZi8oP
99
+ ```
100
+
101
+ A more advanced example is given in [generate_figures.py](./generate_figures.py). The script reproduces the figures from our paper in order to illustrate style mixing, noise inputs, and truncation:
102
+ ```
103
+ > python generate_figures.py
104
+ results/figure02-uncurated-ffhq.png # https://drive.google.com/uc?id=1U3r1xgcD7o-Fd0SBRpq8PXYajm7_30cu
105
+ results/figure03-style-mixing.png # https://drive.google.com/uc?id=1U-nlMDtpnf1RcYkaFQtbh5oxnhA97hy6
106
+ results/figure04-noise-detail.png # https://drive.google.com/uc?id=1UX3m39u_DTU6eLnEW6MqGzbwPFt2R9cG
107
+ results/figure05-noise-components.png # https://drive.google.com/uc?id=1UQKPcvYVeWMRccGMbs2pPD9PVv1QDyp_
108
+ results/figure08-truncation-trick.png # https://drive.google.com/uc?id=1ULea0C12zGlxdDQFNLXOWZCHi3QNfk_v
109
+ results/figure10-uncurated-bedrooms.png # https://drive.google.com/uc?id=1UEBnms1XMfj78OHj3_cx80mUf_m9DUJr
110
+ results/figure11-uncurated-cars.png # https://drive.google.com/uc?id=1UO-4JtAs64Kun5vIj10UXqAJ1d5Ir1Ke
111
+ results/figure12-uncurated-cats.png # https://drive.google.com/uc?id=1USnJc14prlu3QAYxstrtlfXC9sDWPA-W
112
+ ```
113
+
114
+ The pre-trained networks are stored as standard pickle files on Google Drive:
115
+
116
+ ```
117
+ # Load pre-trained network.
118
+ url = 'https://drive.google.com/uc?id=1MEGjdvVpUsu1jB4zrXZN7Y4kBBOzizDQ' # karras2019stylegan-ffhq-1024x1024.pkl
119
+ with dnnlib.util.open_url(url, cache_dir=config.cache_dir) as f:
120
+ _G, _D, Gs = pickle.load(f)
121
+ # _G = Instantaneous snapshot of the generator. Mainly useful for resuming a previous training run.
122
+ # _D = Instantaneous snapshot of the discriminator. Mainly useful for resuming a previous training run.
123
+ # Gs = Long-term average of the generator. Yields higher-quality results than the instantaneous snapshot.
124
+ ```
125
+
126
+ The above code downloads the file and unpickles it to yield 3 instances of [dnnlib.tflib.Network](./dnnlib/tflib/network.py). To generate images, you will typically want to use `Gs` &ndash; the other two networks are provided for completeness. In order for `pickle.load()` to work, you will need to have the `dnnlib` source directory in your PYTHONPATH and a `tf.Session` set as default. The session can initialized by calling `dnnlib.tflib.init_tf()`.
127
+
128
+ There are three ways to use the pre-trained generator:
129
+
130
+ 1. Use `Gs.run()` for immediate-mode operation where the inputs and outputs are numpy arrays:
131
+ ```
132
+ # Pick latent vector.
133
+ rnd = np.random.RandomState(5)
134
+ latents = rnd.randn(1, Gs.input_shape[1])
135
+
136
+ # Generate image.
137
+ fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
138
+ images = Gs.run(latents, None, truncation_psi=0.7, randomize_noise=True, output_transform=fmt)
139
+ ```
140
+ The first argument is a batch of latent vectors of shape `[num, 512]`. The second argument is reserved for class labels (not used by StyleGAN). The remaining keyword arguments are optional and can be used to further modify the operation (see below). The output is a batch of images, whose format is dictated by the `output_transform` argument.
141
+
142
+ 2. Use `Gs.get_output_for()` to incorporate the generator as a part of a larger TensorFlow expression:
143
+ ```
144
+ latents = tf.random_normal([self.minibatch_per_gpu] + Gs_clone.input_shape[1:])
145
+ images = Gs_clone.get_output_for(latents, None, is_validation=True, randomize_noise=True)
146
+ images = tflib.convert_images_to_uint8(images)
147
+ result_expr.append(inception_clone.get_output_for(images))
148
+ ```
149
+ The above code is from [metrics/frechet_inception_distance.py](./metrics/frechet_inception_distance.py). It generates a batch of random images and feeds them directly to the [Inception-v3](https://arxiv.org/abs/1512.00567) network without having to convert the data to numpy arrays in between.
150
+
151
+ 3. Look up `Gs.components.mapping` and `Gs.components.synthesis` to access individual sub-networks of the generator. Similar to `Gs`, the sub-networks are represented as independent instances of [dnnlib.tflib.Network](./dnnlib/tflib/network.py):
152
+ ```
153
+ src_latents = np.stack(np.random.RandomState(seed).randn(Gs.input_shape[1]) for seed in src_seeds)
154
+ src_dlatents = Gs.components.mapping.run(src_latents, None) # [seed, layer, component]
155
+ src_images = Gs.components.synthesis.run(src_dlatents, randomize_noise=False, **synthesis_kwargs)
156
+ ```
157
+ The above code is from [generate_figures.py](./generate_figures.py). It first transforms a batch of latent vectors into the intermediate *W* space using the mapping network and then turns these vectors into a batch of images using the synthesis network. The `dlatents` array stores a separate copy of the same *w* vector for each layer of the synthesis network to facilitate style mixing.
158
+
159
+ The exact details of the generator are defined in [training/networks_stylegan.py](./training/networks_stylegan.py) (see `G_style`, `G_mapping`, and `G_synthesis`). The following keyword arguments can be specified to modify the behavior when calling `run()` and `get_output_for()`:
160
+
161
+ * `truncation_psi` and `truncation_cutoff` control the truncation trick that that is performed by default when using `Gs` (&psi;=0.7, cutoff=8). It can be disabled by setting `truncation_psi=1` or `is_validation=True`, and the image quality can be further improved at the cost of variation by setting e.g. `truncation_psi=0.5`. Note that truncation is always disabled when using the sub-networks directly. The average *w* needed to manually perform the truncation trick can be looked up using `Gs.get_var('dlatent_avg')`.
162
+
163
+ * `randomize_noise` determines whether to use re-randomize the noise inputs for each generated image (`True`, default) or whether to use specific noise values for the entire minibatch (`False`). The specific values can be accessed via the `tf.Variable` instances that are found using `[var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')]`.
164
+
165
+ * When using the mapping network directly, you can specify `dlatent_broadcast=None` to disable the automatic duplication of `dlatents` over the layers of the synthesis network.
166
+
167
+ * Runtime performance can be fine-tuned via `structure='fixed'` and `dtype='float16'`. The former disables support for progressive growing, which is not needed for a fully-trained generator, and the latter performs all computation using half-precision floating point arithmetic.
168
+
169
+ ## Preparing datasets for training
170
+
171
+ The training and evaluation scripts operate on datasets stored as multi-resolution TFRecords. Each dataset is represented by a directory containing the same image data in several resolutions to enable efficient streaming. There is a separate *.tfrecords file for each resolution, and if the dataset contains labels, they are stored in a separate file as well. By default, the scripts expect to find the datasets at `datasets/<NAME>/<NAME>-<RESOLUTION>.tfrecords`. The directory can be changed by editing [config.py](./config.py):
172
+
173
+ ```
174
+ result_dir = 'results'
175
+ data_dir = 'datasets'
176
+ cache_dir = 'cache'
177
+ ```
178
+
179
+ To obtain the FFHQ dataset (`datasets/ffhq`), please refer to the [Flickr-Faces-HQ repository](https://github.com/NVlabs/ffhq-dataset).
180
+
181
+ To obtain the CelebA-HQ dataset (`datasets/celebahq`), please refer to the [Progressive GAN repository](https://github.com/tkarras/progressive_growing_of_gans).
182
+
183
+ To obtain other datasets, including LSUN, please consult their corresponding project pages. The datasets can be converted to multi-resolution TFRecords using the provided [dataset_tool.py](./dataset_tool.py):
184
+
185
+ ```
186
+ > python dataset_tool.py create_lsun datasets/lsun-bedroom-full ~/lsun/bedroom_lmdb --resolution 256
187
+ > python dataset_tool.py create_lsun_wide datasets/lsun-car-512x384 ~/lsun/car_lmdb --width 512 --height 384
188
+ > python dataset_tool.py create_lsun datasets/lsun-cat-full ~/lsun/cat_lmdb --resolution 256
189
+ > python dataset_tool.py create_cifar10 datasets/cifar10 ~/cifar10
190
+ > python dataset_tool.py create_from_images datasets/custom-dataset ~/custom-images
191
+ ```
192
+
193
+ ## Training networks
194
+
195
+ Once the datasets are set up, you can train your own StyleGAN networks as follows:
196
+
197
+ 1. Edit [train.py](./train.py) to specify the dataset and training configuration by uncommenting or editing specific lines.
198
+ 2. Run the training script with `python train.py`.
199
+ 3. The results are written to a newly created directory `results/<ID>-<DESCRIPTION>`.
200
+ 4. The training may take several days (or weeks) to complete, depending on the configuration.
201
+
202
+ By default, `train.py` is configured to train the highest-quality StyleGAN (configuration F in Table 1) for the FFHQ dataset at 1024&times;1024 resolution using 8 GPUs. Please note that we have used 8 GPUs in all of our experiments. Training with fewer GPUs may not produce identical results &ndash; if you wish to compare against our technique, we strongly recommend using the same number of GPUs.
203
+
204
+ Expected training times for the default configuration using Tesla V100 GPUs:
205
+
206
+ | GPUs | 1024&times;1024 | 512&times;512 | 256&times;256 |
207
+ | :--- | :-------------- | :------------ | :------------ |
208
+ | 1 | 41 days 4 hours | 24 days 21 hours | 14 days 22 hours |
209
+ | 2 | 21 days 22 hours | 13 days 7 hours | 9 days 5 hours |
210
+ | 4 | 11 days 8 hours | 7 days 0 hours | 4 days 21 hours |
211
+ | 8 | 6 days 14 hours | 4 days 10 hours | 3 days 8 hours |
212
+
213
+ ## Evaluating quality and disentanglement
214
+
215
+ The quality and disentanglement metrics used in our paper can be evaluated using [run_metrics.py](./run_metrics.py). By default, the script will evaluate the Fr&eacute;chet Inception Distance (`fid50k`) for the pre-trained FFHQ generator and write the results into a newly created directory under `results`. The exact behavior can be changed by uncommenting or editing specific lines in [run_metrics.py](./run_metrics.py).
216
+
217
+ Expected evaluation time and results for the pre-trained FFHQ generator using one Tesla V100 GPU:
218
+
219
+ | Metric | Time | Result | Description
220
+ | :----- | :--- | :----- | :----------
221
+ | fid50k | 16 min | 4.4159 | Fr&eacute;chet Inception Distance using 50,000 images.
222
+ | ppl_zfull | 55 min | 664.8854 | Perceptual Path Length for full paths in *Z*.
223
+ | ppl_wfull | 55 min | 233.3059 | Perceptual Path Length for full paths in *W*.
224
+ | ppl_zend | 55 min | 666.1057 | Perceptual Path Length for path endpoints in *Z*.
225
+ | ppl_wend | 55 min | 197.2266 | Perceptual Path Length for path endpoints in *W*.
226
+ | ls | 10 hours | z: 165.0106<br>w: 3.7447 | Linear Separability in *Z* and *W*.
227
+
228
+ Please note that the exact results may vary from run to run due to the non-deterministic nature of TensorFlow.
229
+
230
+ ## Acknowledgements
231
+
232
+ We thank Jaakko Lehtinen, David Luebke, and Tuomas Kynk&auml;&auml;nniemi for in-depth discussions and helpful comments; Janne Hellsten, Tero Kuosmanen, and Pekka J&auml;nis for compute infrastructure and help with the code release.
models/stylegan/stylegan_tf/config.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # This work is licensed under the Creative Commons Attribution-NonCommercial
4
+ # 4.0 International License. To view a copy of this license, visit
5
+ # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6
+ # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7
+
8
+ """Global configuration."""
9
+
10
+ #----------------------------------------------------------------------------
11
+ # Paths.
12
+
13
+ result_dir = 'results'
14
+ data_dir = 'datasets'
15
+ cache_dir = 'cache'
16
+ run_dir_ignore = ['results', 'datasets', 'cache']
17
+
18
+ #----------------------------------------------------------------------------
models/stylegan/stylegan_tf/dataset_tool.py ADDED
@@ -0,0 +1,645 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # This work is licensed under the Creative Commons Attribution-NonCommercial
4
+ # 4.0 International License. To view a copy of this license, visit
5
+ # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6
+ # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7
+
8
+ """Tool for creating multi-resolution TFRecords datasets for StyleGAN and ProGAN."""
9
+
10
+ # pylint: disable=too-many-lines
11
+ import os
12
+ import sys
13
+ import glob
14
+ import argparse
15
+ import threading
16
+ import six.moves.queue as Queue # pylint: disable=import-error
17
+ import traceback
18
+ import numpy as np
19
+ import tensorflow as tf
20
+ import PIL.Image
21
+ import dnnlib.tflib as tflib
22
+
23
+ from training import dataset
24
+
25
+ #----------------------------------------------------------------------------
26
+
27
+ def error(msg):
28
+ print('Error: ' + msg)
29
+ exit(1)
30
+
31
+ #----------------------------------------------------------------------------
32
+
33
+ class TFRecordExporter:
34
+ def __init__(self, tfrecord_dir, expected_images, print_progress=True, progress_interval=10):
35
+ self.tfrecord_dir = tfrecord_dir
36
+ self.tfr_prefix = os.path.join(self.tfrecord_dir, os.path.basename(self.tfrecord_dir))
37
+ self.expected_images = expected_images
38
+ self.cur_images = 0
39
+ self.shape = None
40
+ self.resolution_log2 = None
41
+ self.tfr_writers = []
42
+ self.print_progress = print_progress
43
+ self.progress_interval = progress_interval
44
+
45
+ if self.print_progress:
46
+ print('Creating dataset "%s"' % tfrecord_dir)
47
+ if not os.path.isdir(self.tfrecord_dir):
48
+ os.makedirs(self.tfrecord_dir)
49
+ assert os.path.isdir(self.tfrecord_dir)
50
+
51
+ def close(self):
52
+ if self.print_progress:
53
+ print('%-40s\r' % 'Flushing data...', end='', flush=True)
54
+ for tfr_writer in self.tfr_writers:
55
+ tfr_writer.close()
56
+ self.tfr_writers = []
57
+ if self.print_progress:
58
+ print('%-40s\r' % '', end='', flush=True)
59
+ print('Added %d images.' % self.cur_images)
60
+
61
+ def choose_shuffled_order(self): # Note: Images and labels must be added in shuffled order.
62
+ order = np.arange(self.expected_images)
63
+ np.random.RandomState(123).shuffle(order)
64
+ return order
65
+
66
+ def add_image(self, img):
67
+ if self.print_progress and self.cur_images % self.progress_interval == 0:
68
+ print('%d / %d\r' % (self.cur_images, self.expected_images), end='', flush=True)
69
+ if self.shape is None:
70
+ self.shape = img.shape
71
+ self.resolution_log2 = int(np.log2(self.shape[1]))
72
+ assert self.shape[0] in [1, 3]
73
+ assert self.shape[1] == self.shape[2]
74
+ assert self.shape[1] == 2**self.resolution_log2
75
+ tfr_opt = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.NONE)
76
+ for lod in range(self.resolution_log2 - 1):
77
+ tfr_file = self.tfr_prefix + '-r%02d.tfrecords' % (self.resolution_log2 - lod)
78
+ self.tfr_writers.append(tf.python_io.TFRecordWriter(tfr_file, tfr_opt))
79
+ assert img.shape == self.shape
80
+ for lod, tfr_writer in enumerate(self.tfr_writers):
81
+ if lod:
82
+ img = img.astype(np.float32)
83
+ img = (img[:, 0::2, 0::2] + img[:, 0::2, 1::2] + img[:, 1::2, 0::2] + img[:, 1::2, 1::2]) * 0.25
84
+ quant = np.rint(img).clip(0, 255).astype(np.uint8)
85
+ ex = tf.train.Example(features=tf.train.Features(feature={
86
+ 'shape': tf.train.Feature(int64_list=tf.train.Int64List(value=quant.shape)),
87
+ 'data': tf.train.Feature(bytes_list=tf.train.BytesList(value=[quant.tostring()]))}))
88
+ tfr_writer.write(ex.SerializeToString())
89
+ self.cur_images += 1
90
+
91
+ def add_labels(self, labels):
92
+ if self.print_progress:
93
+ print('%-40s\r' % 'Saving labels...', end='', flush=True)
94
+ assert labels.shape[0] == self.cur_images
95
+ with open(self.tfr_prefix + '-rxx.labels', 'wb') as f:
96
+ np.save(f, labels.astype(np.float32))
97
+
98
+ def __enter__(self):
99
+ return self
100
+
101
+ def __exit__(self, *args):
102
+ self.close()
103
+
104
+ #----------------------------------------------------------------------------
105
+
106
+ class ExceptionInfo(object):
107
+ def __init__(self):
108
+ self.value = sys.exc_info()[1]
109
+ self.traceback = traceback.format_exc()
110
+
111
+ #----------------------------------------------------------------------------
112
+
113
+ class WorkerThread(threading.Thread):
114
+ def __init__(self, task_queue):
115
+ threading.Thread.__init__(self)
116
+ self.task_queue = task_queue
117
+
118
+ def run(self):
119
+ while True:
120
+ func, args, result_queue = self.task_queue.get()
121
+ if func is None:
122
+ break
123
+ try:
124
+ result = func(*args)
125
+ except:
126
+ result = ExceptionInfo()
127
+ result_queue.put((result, args))
128
+
129
+ #----------------------------------------------------------------------------
130
+
131
+ class ThreadPool(object):
132
+ def __init__(self, num_threads):
133
+ assert num_threads >= 1
134
+ self.task_queue = Queue.Queue()
135
+ self.result_queues = dict()
136
+ self.num_threads = num_threads
137
+ for _idx in range(self.num_threads):
138
+ thread = WorkerThread(self.task_queue)
139
+ thread.daemon = True
140
+ thread.start()
141
+
142
+ def add_task(self, func, args=()):
143
+ assert hasattr(func, '__call__') # must be a function
144
+ if func not in self.result_queues:
145
+ self.result_queues[func] = Queue.Queue()
146
+ self.task_queue.put((func, args, self.result_queues[func]))
147
+
148
+ def get_result(self, func): # returns (result, args)
149
+ result, args = self.result_queues[func].get()
150
+ if isinstance(result, ExceptionInfo):
151
+ print('\n\nWorker thread caught an exception:\n' + result.traceback)
152
+ raise result.value
153
+ return result, args
154
+
155
+ def finish(self):
156
+ for _idx in range(self.num_threads):
157
+ self.task_queue.put((None, (), None))
158
+
159
+ def __enter__(self): # for 'with' statement
160
+ return self
161
+
162
+ def __exit__(self, *excinfo):
163
+ self.finish()
164
+
165
+ def process_items_concurrently(self, item_iterator, process_func=lambda x: x, pre_func=lambda x: x, post_func=lambda x: x, max_items_in_flight=None):
166
+ if max_items_in_flight is None: max_items_in_flight = self.num_threads * 4
167
+ assert max_items_in_flight >= 1
168
+ results = []
169
+ retire_idx = [0]
170
+
171
+ def task_func(prepared, _idx):
172
+ return process_func(prepared)
173
+
174
+ def retire_result():
175
+ processed, (_prepared, idx) = self.get_result(task_func)
176
+ results[idx] = processed
177
+ while retire_idx[0] < len(results) and results[retire_idx[0]] is not None:
178
+ yield post_func(results[retire_idx[0]])
179
+ results[retire_idx[0]] = None
180
+ retire_idx[0] += 1
181
+
182
+ for idx, item in enumerate(item_iterator):
183
+ prepared = pre_func(item)
184
+ results.append(None)
185
+ self.add_task(func=task_func, args=(prepared, idx))
186
+ while retire_idx[0] < idx - max_items_in_flight + 2:
187
+ for res in retire_result(): yield res
188
+ while retire_idx[0] < len(results):
189
+ for res in retire_result(): yield res
190
+
191
+ #----------------------------------------------------------------------------
192
+
193
+ def display(tfrecord_dir):
194
+ print('Loading dataset "%s"' % tfrecord_dir)
195
+ tflib.init_tf({'gpu_options.allow_growth': True})
196
+ dset = dataset.TFRecordDataset(tfrecord_dir, max_label_size='full', repeat=False, shuffle_mb=0)
197
+ tflib.init_uninitialized_vars()
198
+ import cv2 # pip install opencv-python
199
+
200
+ idx = 0
201
+ while True:
202
+ try:
203
+ images, labels = dset.get_minibatch_np(1)
204
+ except tf.errors.OutOfRangeError:
205
+ break
206
+ if idx == 0:
207
+ print('Displaying images')
208
+ cv2.namedWindow('dataset_tool')
209
+ print('Press SPACE or ENTER to advance, ESC to exit')
210
+ print('\nidx = %-8d\nlabel = %s' % (idx, labels[0].tolist()))
211
+ cv2.imshow('dataset_tool', images[0].transpose(1, 2, 0)[:, :, ::-1]) # CHW => HWC, RGB => BGR
212
+ idx += 1
213
+ if cv2.waitKey() == 27:
214
+ break
215
+ print('\nDisplayed %d images.' % idx)
216
+
217
+ #----------------------------------------------------------------------------
218
+
219
+ def extract(tfrecord_dir, output_dir):
220
+ print('Loading dataset "%s"' % tfrecord_dir)
221
+ tflib.init_tf({'gpu_options.allow_growth': True})
222
+ dset = dataset.TFRecordDataset(tfrecord_dir, max_label_size=0, repeat=False, shuffle_mb=0)
223
+ tflib.init_uninitialized_vars()
224
+
225
+ print('Extracting images to "%s"' % output_dir)
226
+ if not os.path.isdir(output_dir):
227
+ os.makedirs(output_dir)
228
+ idx = 0
229
+ while True:
230
+ if idx % 10 == 0:
231
+ print('%d\r' % idx, end='', flush=True)
232
+ try:
233
+ images, _labels = dset.get_minibatch_np(1)
234
+ except tf.errors.OutOfRangeError:
235
+ break
236
+ if images.shape[1] == 1:
237
+ img = PIL.Image.fromarray(images[0][0], 'L')
238
+ else:
239
+ img = PIL.Image.fromarray(images[0].transpose(1, 2, 0), 'RGB')
240
+ img.save(os.path.join(output_dir, 'img%08d.png' % idx))
241
+ idx += 1
242
+ print('Extracted %d images.' % idx)
243
+
244
+ #----------------------------------------------------------------------------
245
+
246
+ def compare(tfrecord_dir_a, tfrecord_dir_b, ignore_labels):
247
+ max_label_size = 0 if ignore_labels else 'full'
248
+ print('Loading dataset "%s"' % tfrecord_dir_a)
249
+ tflib.init_tf({'gpu_options.allow_growth': True})
250
+ dset_a = dataset.TFRecordDataset(tfrecord_dir_a, max_label_size=max_label_size, repeat=False, shuffle_mb=0)
251
+ print('Loading dataset "%s"' % tfrecord_dir_b)
252
+ dset_b = dataset.TFRecordDataset(tfrecord_dir_b, max_label_size=max_label_size, repeat=False, shuffle_mb=0)
253
+ tflib.init_uninitialized_vars()
254
+
255
+ print('Comparing datasets')
256
+ idx = 0
257
+ identical_images = 0
258
+ identical_labels = 0
259
+ while True:
260
+ if idx % 100 == 0:
261
+ print('%d\r' % idx, end='', flush=True)
262
+ try:
263
+ images_a, labels_a = dset_a.get_minibatch_np(1)
264
+ except tf.errors.OutOfRangeError:
265
+ images_a, labels_a = None, None
266
+ try:
267
+ images_b, labels_b = dset_b.get_minibatch_np(1)
268
+ except tf.errors.OutOfRangeError:
269
+ images_b, labels_b = None, None
270
+ if images_a is None or images_b is None:
271
+ if images_a is not None or images_b is not None:
272
+ print('Datasets contain different number of images')
273
+ break
274
+ if images_a.shape == images_b.shape and np.all(images_a == images_b):
275
+ identical_images += 1
276
+ else:
277
+ print('Image %d is different' % idx)
278
+ if labels_a.shape == labels_b.shape and np.all(labels_a == labels_b):
279
+ identical_labels += 1
280
+ else:
281
+ print('Label %d is different' % idx)
282
+ idx += 1
283
+ print('Identical images: %d / %d' % (identical_images, idx))
284
+ if not ignore_labels:
285
+ print('Identical labels: %d / %d' % (identical_labels, idx))
286
+
287
+ #----------------------------------------------------------------------------
288
+
289
+ def create_mnist(tfrecord_dir, mnist_dir):
290
+ print('Loading MNIST from "%s"' % mnist_dir)
291
+ import gzip
292
+ with gzip.open(os.path.join(mnist_dir, 'train-images-idx3-ubyte.gz'), 'rb') as file:
293
+ images = np.frombuffer(file.read(), np.uint8, offset=16)
294
+ with gzip.open(os.path.join(mnist_dir, 'train-labels-idx1-ubyte.gz'), 'rb') as file:
295
+ labels = np.frombuffer(file.read(), np.uint8, offset=8)
296
+ images = images.reshape(-1, 1, 28, 28)
297
+ images = np.pad(images, [(0,0), (0,0), (2,2), (2,2)], 'constant', constant_values=0)
298
+ assert images.shape == (60000, 1, 32, 32) and images.dtype == np.uint8
299
+ assert labels.shape == (60000,) and labels.dtype == np.uint8
300
+ assert np.min(images) == 0 and np.max(images) == 255
301
+ assert np.min(labels) == 0 and np.max(labels) == 9
302
+ onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32)
303
+ onehot[np.arange(labels.size), labels] = 1.0
304
+
305
+ with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr:
306
+ order = tfr.choose_shuffled_order()
307
+ for idx in range(order.size):
308
+ tfr.add_image(images[order[idx]])
309
+ tfr.add_labels(onehot[order])
310
+
311
+ #----------------------------------------------------------------------------
312
+
313
+ def create_mnistrgb(tfrecord_dir, mnist_dir, num_images=1000000, random_seed=123):
314
+ print('Loading MNIST from "%s"' % mnist_dir)
315
+ import gzip
316
+ with gzip.open(os.path.join(mnist_dir, 'train-images-idx3-ubyte.gz'), 'rb') as file:
317
+ images = np.frombuffer(file.read(), np.uint8, offset=16)
318
+ images = images.reshape(-1, 28, 28)
319
+ images = np.pad(images, [(0,0), (2,2), (2,2)], 'constant', constant_values=0)
320
+ assert images.shape == (60000, 32, 32) and images.dtype == np.uint8
321
+ assert np.min(images) == 0 and np.max(images) == 255
322
+
323
+ with TFRecordExporter(tfrecord_dir, num_images) as tfr:
324
+ rnd = np.random.RandomState(random_seed)
325
+ for _idx in range(num_images):
326
+ tfr.add_image(images[rnd.randint(images.shape[0], size=3)])
327
+
328
+ #----------------------------------------------------------------------------
329
+
330
+ def create_cifar10(tfrecord_dir, cifar10_dir):
331
+ print('Loading CIFAR-10 from "%s"' % cifar10_dir)
332
+ import pickle
333
+ images = []
334
+ labels = []
335
+ for batch in range(1, 6):
336
+ with open(os.path.join(cifar10_dir, 'data_batch_%d' % batch), 'rb') as file:
337
+ data = pickle.load(file, encoding='latin1')
338
+ images.append(data['data'].reshape(-1, 3, 32, 32))
339
+ labels.append(data['labels'])
340
+ images = np.concatenate(images)
341
+ labels = np.concatenate(labels)
342
+ assert images.shape == (50000, 3, 32, 32) and images.dtype == np.uint8
343
+ assert labels.shape == (50000,) and labels.dtype == np.int32
344
+ assert np.min(images) == 0 and np.max(images) == 255
345
+ assert np.min(labels) == 0 and np.max(labels) == 9
346
+ onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32)
347
+ onehot[np.arange(labels.size), labels] = 1.0
348
+
349
+ with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr:
350
+ order = tfr.choose_shuffled_order()
351
+ for idx in range(order.size):
352
+ tfr.add_image(images[order[idx]])
353
+ tfr.add_labels(onehot[order])
354
+
355
+ #----------------------------------------------------------------------------
356
+
357
+ def create_cifar100(tfrecord_dir, cifar100_dir):
358
+ print('Loading CIFAR-100 from "%s"' % cifar100_dir)
359
+ import pickle
360
+ with open(os.path.join(cifar100_dir, 'train'), 'rb') as file:
361
+ data = pickle.load(file, encoding='latin1')
362
+ images = data['data'].reshape(-1, 3, 32, 32)
363
+ labels = np.array(data['fine_labels'])
364
+ assert images.shape == (50000, 3, 32, 32) and images.dtype == np.uint8
365
+ assert labels.shape == (50000,) and labels.dtype == np.int32
366
+ assert np.min(images) == 0 and np.max(images) == 255
367
+ assert np.min(labels) == 0 and np.max(labels) == 99
368
+ onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32)
369
+ onehot[np.arange(labels.size), labels] = 1.0
370
+
371
+ with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr:
372
+ order = tfr.choose_shuffled_order()
373
+ for idx in range(order.size):
374
+ tfr.add_image(images[order[idx]])
375
+ tfr.add_labels(onehot[order])
376
+
377
+ #----------------------------------------------------------------------------
378
+
379
+ def create_svhn(tfrecord_dir, svhn_dir):
380
+ print('Loading SVHN from "%s"' % svhn_dir)
381
+ import pickle
382
+ images = []
383
+ labels = []
384
+ for batch in range(1, 4):
385
+ with open(os.path.join(svhn_dir, 'train_%d.pkl' % batch), 'rb') as file:
386
+ data = pickle.load(file, encoding='latin1')
387
+ images.append(data[0])
388
+ labels.append(data[1])
389
+ images = np.concatenate(images)
390
+ labels = np.concatenate(labels)
391
+ assert images.shape == (73257, 3, 32, 32) and images.dtype == np.uint8
392
+ assert labels.shape == (73257,) and labels.dtype == np.uint8
393
+ assert np.min(images) == 0 and np.max(images) == 255
394
+ assert np.min(labels) == 0 and np.max(labels) == 9
395
+ onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32)
396
+ onehot[np.arange(labels.size), labels] = 1.0
397
+
398
+ with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr:
399
+ order = tfr.choose_shuffled_order()
400
+ for idx in range(order.size):
401
+ tfr.add_image(images[order[idx]])
402
+ tfr.add_labels(onehot[order])
403
+
404
+ #----------------------------------------------------------------------------
405
+
406
+ def create_lsun(tfrecord_dir, lmdb_dir, resolution=256, max_images=None):
407
+ print('Loading LSUN dataset from "%s"' % lmdb_dir)
408
+ import lmdb # pip install lmdb # pylint: disable=import-error
409
+ import cv2 # pip install opencv-python
410
+ import io
411
+ with lmdb.open(lmdb_dir, readonly=True).begin(write=False) as txn:
412
+ total_images = txn.stat()['entries'] # pylint: disable=no-value-for-parameter
413
+ if max_images is None:
414
+ max_images = total_images
415
+ with TFRecordExporter(tfrecord_dir, max_images) as tfr:
416
+ for _idx, (_key, value) in enumerate(txn.cursor()):
417
+ try:
418
+ try:
419
+ img = cv2.imdecode(np.fromstring(value, dtype=np.uint8), 1)
420
+ if img is None:
421
+ raise IOError('cv2.imdecode failed')
422
+ img = img[:, :, ::-1] # BGR => RGB
423
+ except IOError:
424
+ img = np.asarray(PIL.Image.open(io.BytesIO(value)))
425
+ crop = np.min(img.shape[:2])
426
+ img = img[(img.shape[0] - crop) // 2 : (img.shape[0] + crop) // 2, (img.shape[1] - crop) // 2 : (img.shape[1] + crop) // 2]
427
+ img = PIL.Image.fromarray(img, 'RGB')
428
+ img = img.resize((resolution, resolution), PIL.Image.ANTIALIAS)
429
+ img = np.asarray(img)
430
+ img = img.transpose([2, 0, 1]) # HWC => CHW
431
+ tfr.add_image(img)
432
+ except:
433
+ print(sys.exc_info()[1])
434
+ if tfr.cur_images == max_images:
435
+ break
436
+
437
+ #----------------------------------------------------------------------------
438
+
439
+ def create_lsun_wide(tfrecord_dir, lmdb_dir, width=512, height=384, max_images=None):
440
+ assert width == 2 ** int(np.round(np.log2(width)))
441
+ assert height <= width
442
+ print('Loading LSUN dataset from "%s"' % lmdb_dir)
443
+ import lmdb # pip install lmdb # pylint: disable=import-error
444
+ import cv2 # pip install opencv-python
445
+ import io
446
+ with lmdb.open(lmdb_dir, readonly=True).begin(write=False) as txn:
447
+ total_images = txn.stat()['entries'] # pylint: disable=no-value-for-parameter
448
+ if max_images is None:
449
+ max_images = total_images
450
+ with TFRecordExporter(tfrecord_dir, max_images, print_progress=False) as tfr:
451
+ for idx, (_key, value) in enumerate(txn.cursor()):
452
+ try:
453
+ try:
454
+ img = cv2.imdecode(np.fromstring(value, dtype=np.uint8), 1)
455
+ if img is None:
456
+ raise IOError('cv2.imdecode failed')
457
+ img = img[:, :, ::-1] # BGR => RGB
458
+ except IOError:
459
+ img = np.asarray(PIL.Image.open(io.BytesIO(value)))
460
+
461
+ ch = int(np.round(width * img.shape[0] / img.shape[1]))
462
+ if img.shape[1] < width or ch < height:
463
+ continue
464
+
465
+ img = img[(img.shape[0] - ch) // 2 : (img.shape[0] + ch) // 2]
466
+ img = PIL.Image.fromarray(img, 'RGB')
467
+ img = img.resize((width, height), PIL.Image.ANTIALIAS)
468
+ img = np.asarray(img)
469
+ img = img.transpose([2, 0, 1]) # HWC => CHW
470
+
471
+ canvas = np.zeros([3, width, width], dtype=np.uint8)
472
+ canvas[:, (width - height) // 2 : (width + height) // 2] = img
473
+ tfr.add_image(canvas)
474
+ print('\r%d / %d => %d ' % (idx + 1, total_images, tfr.cur_images), end='')
475
+
476
+ except:
477
+ print(sys.exc_info()[1])
478
+ if tfr.cur_images == max_images:
479
+ break
480
+ print()
481
+
482
+ #----------------------------------------------------------------------------
483
+
484
+ def create_celeba(tfrecord_dir, celeba_dir, cx=89, cy=121):
485
+ print('Loading CelebA from "%s"' % celeba_dir)
486
+ glob_pattern = os.path.join(celeba_dir, 'img_align_celeba_png', '*.png')
487
+ image_filenames = sorted(glob.glob(glob_pattern))
488
+ expected_images = 202599
489
+ if len(image_filenames) != expected_images:
490
+ error('Expected to find %d images' % expected_images)
491
+
492
+ with TFRecordExporter(tfrecord_dir, len(image_filenames)) as tfr:
493
+ order = tfr.choose_shuffled_order()
494
+ for idx in range(order.size):
495
+ img = np.asarray(PIL.Image.open(image_filenames[order[idx]]))
496
+ assert img.shape == (218, 178, 3)
497
+ img = img[cy - 64 : cy + 64, cx - 64 : cx + 64]
498
+ img = img.transpose(2, 0, 1) # HWC => CHW
499
+ tfr.add_image(img)
500
+
501
+ #----------------------------------------------------------------------------
502
+
503
+ def create_from_images(tfrecord_dir, image_dir, shuffle):
504
+ print('Loading images from "%s"' % image_dir)
505
+ image_filenames = sorted(glob.glob(os.path.join(image_dir, '*')))
506
+ if len(image_filenames) == 0:
507
+ error('No input images found')
508
+
509
+ img = np.asarray(PIL.Image.open(image_filenames[0]))
510
+ resolution = img.shape[0]
511
+ channels = img.shape[2] if img.ndim == 3 else 1
512
+ if img.shape[1] != resolution:
513
+ error('Input images must have the same width and height')
514
+ if resolution != 2 ** int(np.floor(np.log2(resolution))):
515
+ error('Input image resolution must be a power-of-two')
516
+ if channels not in [1, 3]:
517
+ error('Input images must be stored as RGB or grayscale')
518
+
519
+ with TFRecordExporter(tfrecord_dir, len(image_filenames)) as tfr:
520
+ order = tfr.choose_shuffled_order() if shuffle else np.arange(len(image_filenames))
521
+ for idx in range(order.size):
522
+ img = np.asarray(PIL.Image.open(image_filenames[order[idx]]))
523
+ if channels == 1:
524
+ img = img[np.newaxis, :, :] # HW => CHW
525
+ else:
526
+ img = img.transpose([2, 0, 1]) # HWC => CHW
527
+ tfr.add_image(img)
528
+
529
+ #----------------------------------------------------------------------------
530
+
531
+ def create_from_hdf5(tfrecord_dir, hdf5_filename, shuffle):
532
+ print('Loading HDF5 archive from "%s"' % hdf5_filename)
533
+ import h5py # conda install h5py
534
+ with h5py.File(hdf5_filename, 'r') as hdf5_file:
535
+ hdf5_data = max([value for key, value in hdf5_file.items() if key.startswith('data')], key=lambda lod: lod.shape[3])
536
+ with TFRecordExporter(tfrecord_dir, hdf5_data.shape[0]) as tfr:
537
+ order = tfr.choose_shuffled_order() if shuffle else np.arange(hdf5_data.shape[0])
538
+ for idx in range(order.size):
539
+ tfr.add_image(hdf5_data[order[idx]])
540
+ npy_filename = os.path.splitext(hdf5_filename)[0] + '-labels.npy'
541
+ if os.path.isfile(npy_filename):
542
+ tfr.add_labels(np.load(npy_filename)[order])
543
+
544
+ #----------------------------------------------------------------------------
545
+
546
+ def execute_cmdline(argv):
547
+ prog = argv[0]
548
+ parser = argparse.ArgumentParser(
549
+ prog = prog,
550
+ description = 'Tool for creating multi-resolution TFRecords datasets for StyleGAN and ProGAN.',
551
+ epilog = 'Type "%s <command> -h" for more information.' % prog)
552
+
553
+ subparsers = parser.add_subparsers(dest='command')
554
+ subparsers.required = True
555
+ def add_command(cmd, desc, example=None):
556
+ epilog = 'Example: %s %s' % (prog, example) if example is not None else None
557
+ return subparsers.add_parser(cmd, description=desc, help=desc, epilog=epilog)
558
+
559
+ p = add_command( 'display', 'Display images in dataset.',
560
+ 'display datasets/mnist')
561
+ p.add_argument( 'tfrecord_dir', help='Directory containing dataset')
562
+
563
+ p = add_command( 'extract', 'Extract images from dataset.',
564
+ 'extract datasets/mnist mnist-images')
565
+ p.add_argument( 'tfrecord_dir', help='Directory containing dataset')
566
+ p.add_argument( 'output_dir', help='Directory to extract the images into')
567
+
568
+ p = add_command( 'compare', 'Compare two datasets.',
569
+ 'compare datasets/mydataset datasets/mnist')
570
+ p.add_argument( 'tfrecord_dir_a', help='Directory containing first dataset')
571
+ p.add_argument( 'tfrecord_dir_b', help='Directory containing second dataset')
572
+ p.add_argument( '--ignore_labels', help='Ignore labels (default: 0)', type=int, default=0)
573
+
574
+ p = add_command( 'create_mnist', 'Create dataset for MNIST.',
575
+ 'create_mnist datasets/mnist ~/downloads/mnist')
576
+ p.add_argument( 'tfrecord_dir', help='New dataset directory to be created')
577
+ p.add_argument( 'mnist_dir', help='Directory containing MNIST')
578
+
579
+ p = add_command( 'create_mnistrgb', 'Create dataset for MNIST-RGB.',
580
+ 'create_mnistrgb datasets/mnistrgb ~/downloads/mnist')
581
+ p.add_argument( 'tfrecord_dir', help='New dataset directory to be created')
582
+ p.add_argument( 'mnist_dir', help='Directory containing MNIST')
583
+ p.add_argument( '--num_images', help='Number of composite images to create (default: 1000000)', type=int, default=1000000)
584
+ p.add_argument( '--random_seed', help='Random seed (default: 123)', type=int, default=123)
585
+
586
+ p = add_command( 'create_cifar10', 'Create dataset for CIFAR-10.',
587
+ 'create_cifar10 datasets/cifar10 ~/downloads/cifar10')
588
+ p.add_argument( 'tfrecord_dir', help='New dataset directory to be created')
589
+ p.add_argument( 'cifar10_dir', help='Directory containing CIFAR-10')
590
+
591
+ p = add_command( 'create_cifar100', 'Create dataset for CIFAR-100.',
592
+ 'create_cifar100 datasets/cifar100 ~/downloads/cifar100')
593
+ p.add_argument( 'tfrecord_dir', help='New dataset directory to be created')
594
+ p.add_argument( 'cifar100_dir', help='Directory containing CIFAR-100')
595
+
596
+ p = add_command( 'create_svhn', 'Create dataset for SVHN.',
597
+ 'create_svhn datasets/svhn ~/downloads/svhn')
598
+ p.add_argument( 'tfrecord_dir', help='New dataset directory to be created')
599
+ p.add_argument( 'svhn_dir', help='Directory containing SVHN')
600
+
601
+ p = add_command( 'create_lsun', 'Create dataset for single LSUN category.',
602
+ 'create_lsun datasets/lsun-car-100k ~/downloads/lsun/car_lmdb --resolution 256 --max_images 100000')
603
+ p.add_argument( 'tfrecord_dir', help='New dataset directory to be created')
604
+ p.add_argument( 'lmdb_dir', help='Directory containing LMDB database')
605
+ p.add_argument( '--resolution', help='Output resolution (default: 256)', type=int, default=256)
606
+ p.add_argument( '--max_images', help='Maximum number of images (default: none)', type=int, default=None)
607
+
608
+ p = add_command( 'create_lsun_wide', 'Create LSUN dataset with non-square aspect ratio.',
609
+ 'create_lsun_wide datasets/lsun-car-512x384 ~/downloads/lsun/car_lmdb --width 512 --height 384')
610
+ p.add_argument( 'tfrecord_dir', help='New dataset directory to be created')
611
+ p.add_argument( 'lmdb_dir', help='Directory containing LMDB database')
612
+ p.add_argument( '--width', help='Output width (default: 512)', type=int, default=512)
613
+ p.add_argument( '--height', help='Output height (default: 384)', type=int, default=384)
614
+ p.add_argument( '--max_images', help='Maximum number of images (default: none)', type=int, default=None)
615
+
616
+ p = add_command( 'create_celeba', 'Create dataset for CelebA.',
617
+ 'create_celeba datasets/celeba ~/downloads/celeba')
618
+ p.add_argument( 'tfrecord_dir', help='New dataset directory to be created')
619
+ p.add_argument( 'celeba_dir', help='Directory containing CelebA')
620
+ p.add_argument( '--cx', help='Center X coordinate (default: 89)', type=int, default=89)
621
+ p.add_argument( '--cy', help='Center Y coordinate (default: 121)', type=int, default=121)
622
+
623
+ p = add_command( 'create_from_images', 'Create dataset from a directory full of images.',
624
+ 'create_from_images datasets/mydataset myimagedir')
625
+ p.add_argument( 'tfrecord_dir', help='New dataset directory to be created')
626
+ p.add_argument( 'image_dir', help='Directory containing the images')
627
+ p.add_argument( '--shuffle', help='Randomize image order (default: 1)', type=int, default=1)
628
+
629
+ p = add_command( 'create_from_hdf5', 'Create dataset from legacy HDF5 archive.',
630
+ 'create_from_hdf5 datasets/celebahq ~/downloads/celeba-hq-1024x1024.h5')
631
+ p.add_argument( 'tfrecord_dir', help='New dataset directory to be created')
632
+ p.add_argument( 'hdf5_filename', help='HDF5 archive containing the images')
633
+ p.add_argument( '--shuffle', help='Randomize image order (default: 1)', type=int, default=1)
634
+
635
+ args = parser.parse_args(argv[1:] if len(argv) > 1 else ['-h'])
636
+ func = globals()[args.command]
637
+ del args.command
638
+ func(**vars(args))
639
+
640
+ #----------------------------------------------------------------------------
641
+
642
+ if __name__ == "__main__":
643
+ execute_cmdline(sys.argv)
644
+
645
+ #----------------------------------------------------------------------------
models/stylegan/stylegan_tf/dnnlib/__init__.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # This work is licensed under the Creative Commons Attribution-NonCommercial
4
+ # 4.0 International License. To view a copy of this license, visit
5
+ # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6
+ # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7
+
8
+ from . import submission
9
+
10
+ from .submission.run_context import RunContext
11
+
12
+ from .submission.submit import SubmitTarget
13
+ from .submission.submit import PathType
14
+ from .submission.submit import SubmitConfig
15
+ from .submission.submit import get_path_from_template
16
+ from .submission.submit import submit_run
17
+
18
+ from .util import EasyDict
19
+
20
+ submit_config: SubmitConfig = None # Package level variable for SubmitConfig which is only valid when inside the run function.