Spaces:
Runtime error
Runtime error
import os | |
from threading import Thread | |
from typing import Iterator | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
MAX_MAX_NEW_TOKENS = 1024 | |
DEFAULT_MAX_NEW_TOKENS = 256 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
DESCRIPTION = """\ | |
# தமிழ் AI உதவியாளர் | |
இந்த ஸ்பேஸ் தமிழ் Llama-2 7b ஒரு தினசரி வாழ்க்கை AI உதவியாளராக நிரூபிக்கிறது. | |
(This Space demonstrates the Tamil Llama-2 7b [model](https://huggingface.co/abhinand/tamil-llama-7b-instruct-v0.1) as a daily life AI assistant.) | |
""" | |
LICENSE = """ | |
<p/> | |
--- | |
As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta, | |
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md). | |
""" | |
SYSTEM_PROMPT = "ஒரு பணியை எவ்வாறு நிறைவேற்ற வேண்டும் என்று கூறும் அறிவுரை கீழே உள்ளது. வேண்டுகோளைப் பொருத்தமாக நிறைவு செய்கின்ற பதில் ஒன்றை எழுதுக." | |
PROMPT_TEMPLATE = """{% if messages[0]['role'] == 'system' %}{{ messages[0]['content'] + '\n\n' }}{% endif %}### Instruction:\nநீங்கள் ஒரு பயனருடன் உரையாடும் AI உதவியாளர். இதுவரை உங்கள் தொடர்புகளின் அரட்டை வரலாறு இதுதான்:\n\n{% for message in messages %}{% if message['role'] == 'user' %}{{ '\nUser: ' + message['content'] + '\n'}}{% elif message['role'] == 'assistant' %}{{ '\nAI: ' + message['content'] + '\n'}}{% endif %}{% endfor %}\n\nAI உதவியாளராக, உங்கள் அடுத்த பதிலை அரட்டையில் எழுதவும். ஒரே ஒரு பதிலை மட்டும் எழுதுங்கள்.\n\n### Response:\n""" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
if torch.cuda.is_available(): | |
model_id = "abhinand/tamil-llama-7b-instruct-v0.1" | |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
tokenizer.chat_template = PROMPT_TEMPLATE | |
tokenizer.use_default_system_prompt = False | |
def generate( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
) -> Iterator[str]: | |
print("chat history: ", chat_history) | |
conversation = [] | |
conversation.append({"role": "system", "content": SYSTEM_PROMPT}) | |
for user, assistant in chat_history: | |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
conversation.append({"role": "user", "content": message}) | |
print(tokenizer.apply_chat_template(conversation, tokenize=False)) | |
print("conversation: ", conversation) | |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
repetition_penalty=repetition_penalty, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
examples = [ | |
["நான் எப்படி வேகமாக தூங்க முடியும்?"], | |
["என் முதலாளி மிகவும் கட்டுப்படுத்துகிறார், நான் என்ன செய்ய வேண்டும்?"], | |
["திருமணத்திற்கு நான் என்ன அணிய வேண்டும்?"], | |
["வரலாற்றில் தெரிந்து கொள்ள வேண்டிய சில முக்கியமான காலங்கள் யாவை?"], | |
["நான் பணம் சம்பாதிக்க வேண்டும் ஆனால் வேடிக்கையாக இருக்க வேண்டும் என்றால் நல்ல தொழில் எது?"], | |
] | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox(label="உங்கள் செய்தியை உள்ளிடவும் / Enter your message") | |
submit_btn = gr.Button("சமர்ப்பிக்கவும் / Submit") | |
clear = gr.Button("தெளிவானது / Clear") | |
def user(user_message, history): | |
return "", history + [[user_message, None]] | |
def bot(history, max_new_tokens, temperature, top_p, top_k, repetition_penalty): | |
user_message = history[-1][0] | |
chat_history = [(msg[0], msg[1]) for msg in history[:-1]] | |
bot_message = "" | |
for response in generate(user_message, chat_history, max_new_tokens, temperature, top_p, top_k, repetition_penalty): | |
bot_message = response | |
history[-1][1] = bot_message | |
yield history | |
gr.Examples(examples=examples, inputs=[msg], label="உதாரணங்கள் / Examples") | |
with gr.Accordion("மேம்பட்ட விருப்பங்கள் / Advanced Options", open=False): | |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) | |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) | |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) | |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) | |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) | |
submit_btn.click(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
bot, | |
[chatbot, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
chatbot, | |
) | |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
bot, | |
[chatbot, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
chatbot, | |
) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
gr.Markdown(LICENSE) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |