insurance_advisor_wb / rag_app /agents /kb_retriever_agent.py
Asaad Almutareb
added human_as_tool
42f834a
# HF libraries
from langchain_huggingface import HuggingFaceEndpoint
from langchain.agents import AgentExecutor
from langchain.agents.format_scratchpad import format_log_to_str
from langchain.agents.output_parsers import ReActJsonSingleInputOutputParser
# Import things that are needed generically
from langchain.tools.render import render_text_description
import os
from dotenv import load_dotenv
from rag_app.structured_tools.structured_tools import (
google_search, knowledgeBase_search
)
from langchain.prompts import PromptTemplate
from rag_app.templates.react_json_ger import template_system
# from rag_app.utils import logger
# set_llm_cache(SQLiteCache(database_path=".cache.db"))
# logger = logger.get_console_logger("hf_mixtral_agent")
config = load_dotenv(".env")
HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
GOOGLE_CSE_ID = os.getenv('GOOGLE_CSE_ID')
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
LLM_MODEL = os.getenv('LLM_MODEL')
# Load the model from the Hugging Face Hub
llm = HuggingFaceEndpoint(repo_id=LLM_MODEL,
temperature=0.1,
max_new_tokens=1024,
repetition_penalty=1.2,
return_full_text=False
)
tools = [
knowledgeBase_search,
google_search,
]
prompt = PromptTemplate.from_template(
template=template_system
)
prompt = prompt.partial(
tools=render_text_description(tools),
tool_names=", ".join([t.name for t in tools]),
)
# define the agent
chat_model_with_stop = llm.bind(stop=["\nObservation"])
agent = (
{
"input": lambda x: x["input"],
"agent_scratchpad": lambda x: format_log_to_str(x["intermediate_steps"]),
#"chat_history": lambda x: x["chat_history"],
}
| prompt
| chat_model_with_stop
| ReActJsonSingleInputOutputParser()
)
# instantiate AgentExecutor
agent_worker = AgentExecutor(
agent=agent,
tools=tools,
verbose=True,
max_iterations=10, # cap number of iterations
#max_execution_time=60, # timout at 60 sec
return_intermediate_steps=True,
handle_parsing_errors=True,
)