|
|
|
"""
|
|
Created on Wed Nov 13 18:37:31 2024
|
|
|
|
@author: sabar
|
|
"""
|
|
|
|
import gradio as gr
|
|
import cv2
|
|
import numpy as np
|
|
import os
|
|
import json
|
|
from openvino.runtime import Core
|
|
|
|
from tf_post_processing import non_max_suppression
|
|
|
|
|
|
classification_model_xml = "./model/best_openvino_model/best.xml"
|
|
core = Core()
|
|
config = {
|
|
"INFERENCE_NUM_THREADS": 2,
|
|
"ENABLE_CPU_PINNING": True
|
|
}
|
|
model = core.read_model(model=classification_model_xml)
|
|
compiled_model = core.compile_model(model=model, device_name="CPU", config=config)
|
|
|
|
label_to_class_text = {
|
|
0: 'range',
|
|
1: 'entry door',
|
|
2: 'kitchen sink',
|
|
3: 'bathroom sink',
|
|
4: 'toilet',
|
|
5: 'double folding door',
|
|
6: 'window',
|
|
7: 'shower',
|
|
8: 'bathtub',
|
|
9: 'single folding door',
|
|
10: 'dishwasher',
|
|
11: 'refrigerator'
|
|
}
|
|
|
|
|
|
def predict_image(image):
|
|
|
|
img_size = 960
|
|
resized_image = cv2.resize(image, (img_size, img_size)) / 255.0
|
|
resized_image = resized_image.transpose(2, 0, 1)
|
|
reshaped_image = np.expand_dims(resized_image, axis=0).astype(np.float32)
|
|
|
|
im_height, im_width, _ = image.shape
|
|
output_numpy = compiled_model(reshaped_image)[0]
|
|
results = non_max_suppression(output_numpy, conf_thres=0.2, iou_thres=0.6, max_wh=15000)[0]
|
|
|
|
|
|
output_path = "./output_file_train/"
|
|
output_image_folder = os.path.join(output_path, "images_alienware_openvino/")
|
|
os.makedirs(output_image_folder, exist_ok=True)
|
|
|
|
output_json_folder = os.path.join(output_path, "json_output/")
|
|
os.makedirs(output_json_folder, exist_ok=True)
|
|
|
|
predictions = []
|
|
|
|
|
|
for result in results:
|
|
boxes = result[:4]
|
|
prob = result[4]
|
|
classes = int(result[5])
|
|
|
|
x1, y1, x2, y2 = np.uint16([
|
|
boxes[0] * im_width,
|
|
boxes[1] * im_height,
|
|
boxes[2] * im_width,
|
|
boxes[3] * im_height
|
|
])
|
|
|
|
if prob > 0.2:
|
|
cv2.rectangle(image, (x1, y1), (x2, y2), (255, 255, 0), 2)
|
|
label_text = f"{classes} {round(prob, 2)}"
|
|
cv2.putText(image, label_text, (x1, y1), 0, 0.5, (0, 255, 0), 2)
|
|
|
|
|
|
predictions.append({
|
|
"class": label_to_class_text[classes],
|
|
"probability": round(float(prob), 2),
|
|
"coordinates": {
|
|
"xmin": int(x1),
|
|
"ymin": int(y1),
|
|
"xmax": int(x2),
|
|
"ymax": int(y2)
|
|
}
|
|
})
|
|
|
|
|
|
output_image_path = os.path.join(output_image_folder, "result_image.jpg")
|
|
cv2.imwrite(output_image_path, image)
|
|
|
|
output_json_path = os.path.join(output_json_folder, "predictions.json")
|
|
with open(output_json_path, 'w') as f:
|
|
json.dump(predictions, f, indent=4)
|
|
|
|
return output_image_path, predictions
|
|
|
|
|
|
def gradio_interface():
|
|
|
|
|
|
|
|
sample_images = [
|
|
"./sample/10_2.jpg",
|
|
"./sample/10_10.jpg",
|
|
"./sample/10_12.jpg"
|
|
]
|
|
|
|
results = []
|
|
os.makedirs("samples", exist_ok=True)
|
|
|
|
for image_path in sample_images:
|
|
image = cv2.imread(image_path)
|
|
output_image_path, predictions = predict_image(image)
|
|
results.append({
|
|
"image_path": output_image_path,
|
|
"predictions": predictions
|
|
})
|
|
|
|
return results
|
|
|
|
|
|
gr.Interface(
|
|
fn=gradio_interface,
|
|
inputs=None,
|
|
outputs="json",
|
|
title="OpenVINO Model Inference with Gradio",
|
|
description="Reads images from the 'sample' folder to get model predictions with bounding boxes and probabilities."
|
|
).launch()
|
|
|