Spaces:
Running
Running
import pandas as pd | |
import requests | |
from bs4 import BeautifulSoup | |
import os | |
import re | |
import random | |
from dotenv import load_dotenv # For local testing with a .env file | |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import gradio as gr | |
import time | |
# --- Configuration --- | |
load_dotenv() # Loads HF_TOKEN and TMDB_API_KEY from .env for local testing | |
# SECRETS - These will be read from Hugging Face Space Secrets when deployed | |
TMDB_API_KEY = os.environ.get("TMDB_API_KEY") | |
HF_TOKEN = os.environ.get("HF_TOKEN") # Essential for gated models like ALLaM | |
MODEL_NAME = "ALLaM-AI/ALLaM-7B-Instruct-preview" # Target ALLaM model | |
BASE_TMDB_URL = "https://api.themoviedb.org/3" | |
POSTER_BASE_URL = "https://image.tmdb.org/t/p/w500" | |
NUM_RECOMMENDATIONS_TO_DISPLAY = 5 | |
MIN_RATING_FOR_SEED = 3.5 | |
MIN_VOTE_COUNT_TMDB = 100 # Minimum votes on TMDB for a movie to be considered | |
# --- Global Variables for Data & Model (Load once) --- | |
df_profile_global = None | |
df_watchlist_global = None | |
df_reviews_global = None | |
df_diary_global = None | |
df_ratings_global = None | |
df_watched_global = None # This will be a consolidated df | |
uri_to_movie_map_global = {} | |
all_watched_titles_global = set() | |
watchlist_titles_global = set() | |
favorite_film_details_global = [] | |
seed_movies_global = [] | |
llm_pipeline = None | |
llm_tokenizer = None | |
# --- Helper Functions --- | |
def clean_html(raw_html): | |
if pd.isna(raw_html) or raw_html is None: return "" | |
text = str(raw_html) | |
text = re.sub(r'<br\s*/?>', '\n', text) # Convert <br> to newlines | |
soup = BeautifulSoup(text, "html.parser") | |
return soup.get_text(separator=" ", strip=True) | |
def get_movie_uri_map(dfs_dict): | |
uri_map = {} | |
df_priority = ['reviews.csv', 'diary.csv', 'ratings.csv', 'watched.csv', 'watchlist.csv'] | |
processed_uris = set() | |
for df_name in df_priority: | |
df = dfs_dict.get(df_name) | |
if df is not None and 'Letterboxd URI' in df.columns and 'Name' in df.columns and 'Year' in df.columns: | |
for _, row in df.iterrows(): | |
uri = row['Letterboxd URI'] | |
if pd.notna(uri) and uri not in processed_uris: | |
if pd.notna(row['Name']) and pd.notna(row['Year']): | |
try: | |
year = int(row['Year']) | |
uri_map[uri] = (str(row['Name']), year) | |
processed_uris.add(uri) | |
except ValueError: | |
# Silently skip if year is not a valid integer for URI mapping | |
pass | |
return uri_map | |
def load_all_data(): | |
global df_profile_global, df_watchlist_global, df_reviews_global, df_diary_global | |
global df_ratings_global, df_watched_global, uri_to_movie_map_global, all_watched_titles_global | |
global watchlist_titles_global, favorite_film_details_global, seed_movies_global | |
try: | |
# Assumes CSV files are in the root of the Hugging Face Space | |
df_profile_global = pd.read_csv("profile.csv") | |
# df_comments_global = pd.read_csv("comments.csv") # Not directly used in recs logic | |
df_watchlist_global = pd.read_csv("watchlist.csv") | |
df_reviews_global = pd.read_csv("reviews.csv") | |
df_diary_global = pd.read_csv("diary.csv") | |
df_ratings_global = pd.read_csv("ratings.csv") | |
_df_watched_log = pd.read_csv("watched.csv") # Raw log of watched films | |
except FileNotFoundError as e: | |
print(f"CRITICAL ERROR: CSV file not found: {e}. Ensure all CSVs are uploaded to the HF Space root.") | |
return False # Indicate failure to load data | |
dfs_for_uri_map = { | |
"reviews.csv": df_reviews_global, "diary.csv": df_diary_global, | |
"ratings.csv": df_ratings_global, "watched.csv": _df_watched_log, | |
"watchlist.csv": df_watchlist_global | |
} | |
uri_to_movie_map_global = get_movie_uri_map(dfs_for_uri_map) | |
df_diary_global.rename(columns={'Rating': 'Diary Rating'}, inplace=True) | |
df_reviews_global.rename(columns={'Rating': 'Review Rating', 'Review': 'Review Text'}, inplace=True) | |
df_ratings_global.rename(columns={'Rating': 'Simple Rating'}, inplace=True) | |
consolidated = df_reviews_global[['Letterboxd URI', 'Name', 'Year', 'Review Rating', 'Review Text', 'Watched Date']].copy() | |
consolidated.rename(columns={'Review Rating': 'Rating'}, inplace=True) | |
diary_subset = df_diary_global[['Letterboxd URI', 'Name', 'Year', 'Diary Rating', 'Watched Date']].copy() | |
diary_subset.rename(columns={'Diary Rating': 'Rating_diary', 'Watched Date': 'Watched Date_diary'}, inplace=True) | |
consolidated = pd.merge(consolidated, diary_subset, on=['Letterboxd URI', 'Name', 'Year'], how='outer', suffixes=('', '_diary')) | |
consolidated['Rating'] = consolidated['Rating'].fillna(consolidated['Rating_diary']) | |
consolidated['Watched Date'] = consolidated['Watched Date'].fillna(consolidated['Watched Date_diary']) | |
consolidated.drop(columns=['Rating_diary', 'Watched Date_diary'], inplace=True) | |
ratings_subset = df_ratings_global[['Letterboxd URI', 'Name', 'Year', 'Simple Rating']].copy() | |
ratings_subset.rename(columns={'Simple Rating': 'Rating_simple'}, inplace=True) | |
consolidated = pd.merge(consolidated, ratings_subset, on=['Letterboxd URI', 'Name', 'Year'], how='outer', suffixes=('', '_simple')) | |
consolidated['Rating'] = consolidated['Rating'].fillna(consolidated['Rating_simple']) | |
consolidated.drop(columns=['Rating_simple'], inplace=True) | |
watched_log_subset = _df_watched_log[['Letterboxd URI', 'Name', 'Year']].copy() | |
watched_log_subset['from_watched_log'] = True | |
consolidated = pd.merge(consolidated, watched_log_subset, on=['Letterboxd URI', 'Name', 'Year'], how='outer') | |
consolidated['from_watched_log'] = consolidated['from_watched_log'].fillna(False).astype(bool) | |
consolidated['Review Text'] = consolidated['Review Text'].fillna('').apply(clean_html) | |
consolidated['Year'] = pd.to_numeric(consolidated['Year'], errors='coerce').astype('Int64') | |
consolidated.dropna(subset=['Name', 'Year'], inplace=True) # Ensure essential fields are present | |
consolidated.drop_duplicates(subset=['Name', 'Year'], keep='first', inplace=True) | |
df_watched_global = consolidated | |
all_watched_titles_global = set(zip(df_watched_global['Name'].astype(str), df_watched_global['Year'].astype(int))) | |
for _, row in _df_watched_log.iterrows(): | |
if pd.notna(row['Name']) and pd.notna(row['Year']): | |
try: all_watched_titles_global.add((str(row['Name']), int(row['Year']))) | |
except ValueError: pass | |
if df_watchlist_global is not None: | |
watchlist_titles_global = set() | |
for _, row in df_watchlist_global.iterrows(): | |
if pd.notna(row['Name']) and pd.notna(row['Year']): | |
try: watchlist_titles_global.add((str(row['Name']), int(row['Year']))) | |
except ValueError: pass | |
favorite_film_details_global = [] | |
if df_profile_global is not None and 'Favorite Films' in df_profile_global.columns and not df_profile_global.empty: | |
fav_uris_str = df_profile_global.iloc[0]['Favorite Films'] | |
if pd.notna(fav_uris_str): | |
fav_uris = [uri.strip() for uri in fav_uris_str.split(',')] | |
for uri in fav_uris: | |
if uri in uri_to_movie_map_global: | |
name, year = uri_to_movie_map_global[uri] | |
match = df_watched_global[(df_watched_global['Name'] == name) & (df_watched_global['Year'] == year)] | |
rating = match['Rating'].iloc[0] if not match.empty and pd.notna(match['Rating'].iloc[0]) else None | |
review = match['Review Text'].iloc[0] if not match.empty and match['Review Text'].iloc[0] else "" | |
favorite_film_details_global.append({'name': name, 'year': year, 'rating': rating, 'review_text': review, 'uri': uri}) | |
seed_movies_global.extend(favorite_film_details_global) | |
if not df_watched_global.empty: # Ensure df_watched_global is not empty | |
highly_rated_df = df_watched_global[df_watched_global['Rating'] >= MIN_RATING_FOR_SEED] | |
favorite_uris = {fav['uri'] for fav in favorite_film_details_global if 'uri' in fav} | |
for _, row in highly_rated_df.iterrows(): | |
if row['Letterboxd URI'] not in favorite_uris: | |
seed_movies_global.append({ | |
'name': row['Name'], 'year': row['Year'], 'rating': row['Rating'], | |
'review_text': row['Review Text'], 'uri': row['Letterboxd URI'] | |
}) | |
if seed_movies_global: # Only process if seed_movies_global is not empty | |
temp_df = pd.DataFrame(seed_movies_global) | |
if not temp_df.empty: | |
temp_df.drop_duplicates(subset=['name', 'year'], keep='first', inplace=True) | |
seed_movies_global = temp_df.to_dict('records') | |
else: | |
seed_movies_global = [] | |
random.shuffle(seed_movies_global) | |
return True | |
def initialize_llm(): | |
global llm_pipeline, llm_tokenizer | |
if llm_pipeline is None: # Proceed only if pipeline is not already initialized | |
print(f"Attempting to initialize LLM: {MODEL_NAME}") | |
if not HF_TOKEN: | |
print("CRITICAL ERROR: HF_TOKEN environment variable not set. Cannot access gated model.") | |
return # Stop initialization if token is missing | |
try: | |
llm_tokenizer = AutoTokenizer.from_pretrained( | |
MODEL_NAME, | |
trust_remote_code=True, | |
token=HF_TOKEN, | |
use_fast=False # Using slow tokenizer as per previous debugging for SentencePiece | |
) | |
print(f"Tokenizer for {MODEL_NAME} loaded.") | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
torch_dtype=torch.float16, | |
device_map="auto", # Automatically map to available device | |
load_in_8bit=True, # Enable 8-bit quantization; requires bitsandbytes | |
trust_remote_code=True, | |
token=HF_TOKEN | |
) | |
print(f"Model {MODEL_NAME} loaded.") | |
if llm_tokenizer.pad_token is None: | |
print("Tokenizer pad_token is None, setting to eos_token.") | |
llm_tokenizer.pad_token = llm_tokenizer.eos_token | |
if model.config.pad_token_id is None: # Also update model config if needed | |
model.config.pad_token_id = model.config.eos_token_id | |
print(f"Model config pad_token_id set to: {model.config.pad_token_id}") | |
llm_pipeline = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=llm_tokenizer | |
) | |
print(f"LLM pipeline for {MODEL_NAME} initialized successfully.") | |
except Exception as e: | |
print(f"ERROR during LLM initialization ({MODEL_NAME}): {e}") | |
# Ensure these are reset if initialization fails partway | |
llm_pipeline = None | |
llm_tokenizer = None | |
# --- TMDB API Functions --- | |
def search_tmdb_movie_details(title, year): | |
if not TMDB_API_KEY: | |
print("CRITICAL ERROR: TMDB_API_KEY not configured.") | |
return None | |
try: | |
search_url = f"{BASE_TMDB_URL}/search/movie" | |
params = {'api_key': TMDB_API_KEY, 'query': title, 'year': year, 'language': 'en-US'} | |
response = requests.get(search_url, params=params) | |
response.raise_for_status() | |
results = response.json().get('results', []) | |
if results: | |
movie = results[0] | |
movie_details_url = f"{BASE_TMDB_URL}/movie/{movie['id']}" | |
details_params = {'api_key': TMDB_API_KEY, 'language': 'en-US'} | |
details_response = requests.get(movie_details_url, params=details_params) | |
details_response.raise_for_status() | |
movie_full_details = details_response.json() | |
return { | |
'id': movie.get('id'), 'title': movie.get('title'), | |
'year': str(movie.get('release_date', ''))[:4], 'overview': movie.get('overview'), | |
'poster_path': POSTER_BASE_URL + movie.get('poster_path') if movie.get('poster_path') else "https://via.placeholder.com/500x750.png?text=No+Poster", | |
'genres': [genre['name'] for genre in movie_full_details.get('genres', [])], | |
'vote_average': movie.get('vote_average'), 'vote_count': movie.get('vote_count'), | |
'popularity': movie.get('popularity') | |
} | |
time.sleep(0.3) # Slightly increased delay for API calls | |
except requests.RequestException as e: print(f"TMDB API Error (search) for {title} ({year}): {e}") | |
except Exception as ex: print(f"Unexpected error in TMDB search for {title} ({year}): {ex}") | |
return None | |
def get_tmdb_recommendations(movie_id, page=1): | |
if not TMDB_API_KEY: | |
print("CRITICAL ERROR: TMDB_API_KEY not configured.") | |
return [] | |
recommendations = [] | |
try: | |
rec_url = f"{BASE_TMDB_URL}/movie/{movie_id}/recommendations" | |
params = {'api_key': TMDB_API_KEY, 'page': page, 'language': 'en-US'} | |
response = requests.get(rec_url, params=params) | |
response.raise_for_status() | |
results = response.json().get('results', []) | |
for movie in results: | |
if movie.get('vote_count', 0) >= MIN_VOTE_COUNT_TMDB: | |
recommendations.append({ | |
'id': movie.get('id'), 'title': movie.get('title'), | |
'year': str(movie.get('release_date', ''))[:4] if movie.get('release_date') else "N/A", | |
'overview': movie.get('overview'), | |
'poster_path': POSTER_BASE_URL + movie.get('poster_path') if movie.get('poster_path') else "https://via.placeholder.com/500x750.png?text=No+Poster", | |
'vote_average': movie.get('vote_average'), 'vote_count': movie.get('vote_count'), | |
'popularity': movie.get('popularity') | |
}) | |
time.sleep(0.3) # Slightly increased delay | |
except requests.RequestException as e: print(f"TMDB API Error (recommendations) for movie ID {movie_id}: {e}") | |
except Exception as ex: print(f"Unexpected error in TMDB recommendations for movie ID {movie_id}: {ex}") | |
return recommendations | |
# --- LLM Explanation --- | |
def generate_saudi_explanation(recommended_movie_title, seed_movie_title, seed_movie_context=""): | |
global llm_pipeline, llm_tokenizer | |
if llm_pipeline is None or llm_tokenizer is None: | |
print("LLM pipeline or tokenizer not available for explanation generation.") | |
return "ููุฃุณูุ ูู ูุฐุฌ ุงูุฐูุงุก ุงูุงุตุทูุงุนู ู ู ุฌุงูุฒ ุญุงููุงู. ุญุงูู ู ุฑุฉ ุซุงููุฉ ุจุนุฏ ุดูู." | |
max_context_len = 150 | |
seed_movie_context_short = (seed_movie_context[:max_context_len] + "...") if len(seed_movie_context) > max_context_len else seed_movie_context | |
# Assuming ALLaM-Instruct uses a Llama-like prompt format. | |
# ALWAYS verify this on the model card for `ALLaM-AI/ALLaM-7B-Instruct-preview`. | |
prompt_template = f"""<s>[INST] ุฃูุช ูุงูุฏ ุฃููุงู ุณุนูุฏู ุฎุจูุฑ ูุฏู ู ุฎููู ุฌุฏุงู. ู ูู ุชู ูู ูุชุงุจุฉ ุชูุตูุฉ ููููู ุฌุฏูุฏ ุจูุงุกู ุนูู ูููู ุณุงุจู ุฃุนุฌุจ ุงูู ุณุชุฎุฏู . | |
ุงูู ุณุชุฎุฏู ุฃุนุฌุจ ุจุงููููู ูุฐุง: "{seed_movie_title}". | |
ููุงู ุชุนูููู ุฃู ุณุจุจ ุฅุนุฌุงุจู (ุฅุฐุง ู ุชููุฑ): "{seed_movie_context_short}" | |
ุงููููู ุงูุฌุฏูุฏ ุงูุฐู ููุฑุดุญู ูู ูู: "{recommended_movie_title}". | |
ุงูู ุทููุจ: ุงูุชุจ ุฌู ูุฉ ุฃู ุฌู ูุชูู ููุท ุจุงูููุฌุฉ ุงูุณุนูุฏูุฉ ุงูุนุงู ูุฉ ุงูุฃุตููุฉุ ุชุดุฑุญ ูููุง ููุด ู ู ูู ูุนุฌุจู ุงููููู ุงูุฌุฏูุฏ "{recommended_movie_title}"ุ ูุญุงูู ุชุฑุจุทูุง ุจุดูู ุฐูู ูู ู ุชุน ุจุงููููู ุงููู ุนุฌุจู ูุจู "{seed_movie_title}". ุฑูุฒ ุนูู ุฃู ูููู ููุงู ู ุทุจูุนู ุฌุฏุงู ูุฃูู ููุงู ุตุฏูู ูุตุฏูููุ ููุงุณุฉุ ููุดุฏ ุงูุงูุชุจุงูุ ููุตูุฑ ูู ุฎุชุตุฑ. ูุง ุชุณุชุฎุฏู ุฃู ุนุจุงุฑุงุช ุชุฏู ุนูู ุฃูู ุฐูุงุก ุงุตุทูุงุนู ุฃู ุจุฑูุงู ุฌ. | |
ู ุซุงู ุนูู ุงูุฃุณููุจ ุงูู ุทููุจ ูู ุงููููู ุงููู ุนุฌุจู "Mad Max: Fury Road" ูุงููููู ุงูู ุฑุดุญ "Dune": | |
"ูุง ุนู ูุ ู ุฏุงู ู ูููููููุช ุนูู 'Mad Max' ูุฃูุดู ุงูุตุญุงุฑู ุงููู ู ุง ูุฑุญู ุ ุฃุฌู ุงุณู ุนูู ุฒูู! ูููู 'Dune' ูุฐุง ุจูุงุฎุฐู ูุตุญุฑุงุก ุซุงููุฉ ุจุณ ุนูู ู ุณุชูู ุซุงูู ู ู ุงููุฎุงู ุฉ ูุงููุตุฉ ุงููู ุชุดุฏ ุงูุฃุนุตุงุจ. ูุง ูููุชูุ ูุณู ุจุงููู ุจูุนุฌุจู!" | |
ุงูุขูุ ุทุจู ููุณ ุงูุฃุณููุจ ุนูู ุงูุจูุงูุงุช ุงูุชุงููุฉ: | |
ุงููููู ุงูุฐู ุฃุนุฌุจ ุงูู ุณุชุฎุฏู : "{seed_movie_title}" | |
ุณุจุจ ุฅุนุฌุงุจู (ุฅุฐุง ู ุชููุฑ): "{seed_movie_context_short}" | |
ุงููููู ุงูู ุฑุดุญ: "{recommended_movie_title}" | |
ุชูุตูุชู ุจุงูููุฌุฉ ุงูุณุนูุฏูุฉ: [/INST]""" | |
try: | |
sequences = llm_pipeline( | |
prompt_template, do_sample=True, top_k=20, top_p=0.9, num_return_sequences=1, | |
eos_token_id=llm_tokenizer.eos_token_id, | |
pad_token_id=llm_tokenizer.pad_token_id if llm_tokenizer.pad_token_id is not None else llm_tokenizer.eos_token_id, | |
max_new_tokens=160 # Increased slightly more | |
) | |
explanation = sequences[0]['generated_text'].split("[/INST]")[-1].strip() | |
explanation = explanation.replace("<s>", "").replace("</s>", "").strip() | |
explanation = re.sub(r"ุจุตูุชู ูู ูุฐุฌ ูุบูู.*?\s*,?\s*", "", explanation, flags=re.IGNORECASE) | |
explanation = re.sub(r"ููู ูุฐุฌ ูุบูู.*?\s*,?\s*", "", explanation, flags=re.IGNORECASE) | |
if not explanation or explanation.lower().startswith("ุฃูุช ูุงูุฏ ุฃููุงู ") or len(explanation) < 20 : | |
print(f"LLM explanation for '{recommended_movie_title}' was too short or poor. Falling back.") | |
return f"ุดููู ุจุชูุจุณุท ุนูู ูููู '{recommended_movie_title}' ูุฃูู ูุดุจู ุฌู ูููู '{seed_movie_title}' ุงููู ุญุจูุชู! ุนุทูู ุชุฌุฑุจุฉ." | |
return explanation | |
except Exception as e: | |
print(f"ERROR during LLM generation with {MODEL_NAME}: {e}") | |
return f"ูุง ูุงุจุชูุ ุดููู ุจุชุญุจ '{recommended_movie_title}'ุ ุฎุงุตุฉ ุฅูู ุงุณุชู ุชุนุช ุจู'{seed_movie_title}'. ุฌุฑุจู ูุนุทูุง ุฑุฃูู!" | |
# --- Recommendation Logic --- | |
def get_recommendations(progress=gr.Progress(track_tqdm=True)): | |
if not TMDB_API_KEY: | |
return "<p style='color:red; text-align:right;'>ุฎุทุฃ: ู ูุชุงุญ TMDB API ู ู ู ูุฌูุฏ ุฃู ุบูุฑ ุตุญูุญ. ุงูุฑุฌุงุก ุงูุชุฃูุฏ ู ู ุฅุถุงูุชู ูู Secret ุจุดูู ุตุญูุญ ูู ุฅุนุฏุงุฏุงุช ุงูู Space.</p>" | |
if not all([df_profile_global is not None, df_watched_global is not None, seed_movies_global is not None]): # seed_movies_global can be empty list | |
return "<p style='color:red; text-align:right;'>ุฎุทุฃ: ูุดู ูู ุชุญู ูู ุจูุงูุงุช ุงูู ุณุชุฎุฏู . ุชุฃูุฏ ู ู ุฑูุน ู ููุงุช CSV ุจุดูู ุตุญูุญ.</p>" | |
if llm_pipeline is None: # Ensure LLM is ready | |
initialize_llm() # Try to initialize if it wasn't at startup | |
if llm_pipeline is None: | |
return "<p style='color:red; text-align:right;'>ุฎุทุฃ: ูุดู ูู ุชููุฆุฉ ูู ูุฐุฌ ุงูุฐูุงุก ุงูุงุตุทูุงุนู. ุชุฃูุฏ ู ู ูุฌูุฏ HF_TOKEN ุตุญูุญ ูุฃู ูุฏูู ุตูุงุญูุฉ ุงููุตูู ูููู ูุฐุฌ ุงูู ุญุฏุฏ.</p>" | |
if not seed_movies_global: # Check if seed_movies list is empty after loading | |
return "<p style='text-align:right;'>ู ุง ููููุง ุฃููุงู ู ูุถูุฉ ุฃู ู ููู ุฉ ุชูููู ุนุงูู ููุงูุฉ ุนุดุงู ูุจูู ุนูููุง ุชูุตูุงุช. ุญุงูู ุชูููู ุจุนุถ ุงูุฃููุงู !</p>" | |
progress(0.1, desc="ูุฌู ุน ุฃููุงู ู ุงูู ูุถูุฉ...") | |
potential_recs = {} | |
# Limit number of seeds to process to avoid excessive API calls / long processing | |
seeds_to_process = seed_movies_global[:20] if len(seed_movies_global) > 20 else seed_movies_global | |
for i, seed_movie in enumerate(seeds_to_process): | |
progress(0.1 + (i / len(seeds_to_process)) * 0.4, desc=f"ูุจุญุซ ุนู ุชูุตูุงุช ุจูุงุกู ุนูู: {seed_movie.get('name', 'ูููู ุบูุฑ ู ุนุฑูู')}") | |
seed_tmdb_details = search_tmdb_movie_details(seed_movie.get('name'), seed_movie.get('year')) | |
if seed_tmdb_details and seed_tmdb_details.get('id'): | |
tmdb_recs = get_tmdb_recommendations(seed_tmdb_details['id']) | |
for rec in tmdb_recs: | |
try: | |
# Ensure year is a valid integer for tuple creation | |
year_val = int(rec['year']) if rec.get('year') and str(rec['year']).isdigit() else None | |
if year_val is None: continue # Skip if year is invalid | |
rec_tuple = (str(rec['title']), year_val) | |
if rec.get('id') and rec_tuple not in all_watched_titles_global and rec_tuple not in watchlist_titles_global: | |
if rec['id'] not in potential_recs: # Add if new | |
potential_recs[rec['id']] = { | |
'movie_info': rec, | |
'seed_movie_title': seed_movie.get('name'), | |
'seed_movie_context': seed_movie.get('review_text', '') or seed_movie.get('comment_text', '') | |
} | |
except (ValueError, TypeError) as e: | |
# print(f"Skipping recommendation due to data issue: {rec.get('title')} - {e}") | |
continue | |
if not potential_recs: | |
return "<p style='text-align:right;'>ู ุง ููููุง ุชูุตูุงุช ุฌุฏูุฏุฉ ูู ุญุงููุงู ุจูุงุกู ุนูู ุฃููุงู ู ุงูู ูุถูุฉ. ูู ูู ุดูุช ูู ุดูุก ุฑููุจ! ๐</p>" | |
# Sort recommendations by TMDB popularity | |
sorted_recs_list = sorted(potential_recs.values(), key=lambda x: x['movie_info'].get('popularity', 0), reverse=True) | |
final_recommendations_data = [] | |
displayed_ids = set() | |
for rec_data in sorted_recs_list: | |
if len(final_recommendations_data) >= NUM_RECOMMENDATIONS_TO_DISPLAY: break | |
if rec_data['movie_info']['id'] not in displayed_ids: | |
final_recommendations_data.append(rec_data) | |
displayed_ids.add(rec_data['movie_info']['id']) | |
if not final_recommendations_data: | |
return "<p style='text-align:right;'>ู ุง ููููุง ุชูุตูุงุช ุฌุฏูุฏุฉ ูู ุญุงููุงู ุจุนุฏ ุงูููุชุฑุฉ. ูู ูู ุดูุช ูู ุดูุก ุฑููุจ! ๐</p>" | |
output_html = "<div style='padding: 10px;'>" # Main container with some padding | |
progress(0.6, desc="ูุฌูุฒ ูู ุงูุดุฑุญ ุจุงููุบุฉ ุงูุนุงู ูุฉ...") | |
for i, rec_data in enumerate(final_recommendations_data): | |
progress(0.6 + (i / len(final_recommendations_data)) * 0.4, desc=f"ููุชุจ ุดุฑุญ ููููู : {rec_data['movie_info']['title']}") | |
explanation = generate_saudi_explanation( | |
rec_data['movie_info']['title'], rec_data['seed_movie_title'], rec_data['seed_movie_context'] | |
) | |
poster_url = rec_data['movie_info']['poster_path'] | |
# Fallback for missing posters | |
if not poster_url or "No+Poster" in poster_url or "placeholder.com" in poster_url : | |
poster_url = f"https://via.placeholder.com/300x450.png?text={requests.utils.quote(rec_data['movie_info']['title'])}" | |
output_html += f""" | |
<div style="display: flex; flex-direction: row-reverse; align-items: flex-start; margin-bottom: 25px; border-bottom: 1px solid #ddd; padding-bottom:15px; background-color: #f9f9f9; border-radius: 8px; padding: 15px; box-shadow: 0 2px 4px rgba(0,0,0,0.05);"> | |
<img src="{poster_url}" alt="{rec_data['movie_info']['title']}" style="width: 150px; max-width:30%; height: auto; margin-left: 20px; border-radius: 5px; box-shadow: 2px 2px 5px rgba(0,0,0,0.1);"> | |
<div style="text-align: right; direction: rtl; flex-grow: 1;"> | |
<h3 style="margin-top:0; color: #c70039;">{rec_data['movie_info']['title']} ({rec_data['movie_info']['year']})</h3> | |
<p style="font-size: 1.1em; color: #333; line-height: 1.6;">{explanation}</p> | |
<p style="font-size: 0.9em; color: #555; margin-top: 10px;"><em><strong style="color:#c70039;">ุงูุณุจุจ:</strong> ุญุจููุช ูููู <strong style="color:#333;">{rec_data['seed_movie_title']}</strong></em></p> | |
</div> | |
</div>""" | |
output_html += "</div>" | |
return gr.HTML(output_html) | |
# --- Gradio Interface --- | |
css_theme = """ | |
body { font-family: 'Tajawal', sans-serif; } | |
.gradio-container { font-family: 'Tajawal', sans-serif !important; direction: rtl; max-width: 900px !important; margin: auto !important; } | |
footer { display: none !important; } | |
.gr-button { background-color: #c70039 !important; color: white !important; font-size: 1.2em !important; padding: 12px 24px !important; border-radius: 8px !important; font-weight: bold; } | |
.gr-button:hover { background-color: #a3002f !important; box-shadow: 0 2px 5px rgba(0,0,0,0.2); } | |
h1 { color: #900c3f !important; } | |
.gr-html-output h3 { color: #c70039 !important; } /* Style h3 within the HTML output specifically */ | |
""" | |
# Attempt to load data and LLM at startup | |
data_loaded_successfully = load_all_data() | |
if data_loaded_successfully: | |
print("User data loaded successfully.") | |
# LLM initialization will be attempted when the Gradio app starts, | |
# or on the first click if it failed at startup. | |
# initialize_llm() # Call it here to attempt loading at startup | |
else: | |
print("CRITICAL: Failed to load user data. App functionality will be limited.") | |
# It's better to initialize LLM once the app blocks are defined, | |
# or trigger it on first use if it's very resource-intensive at startup. | |
# For Spaces, startup initialization is fine. | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="red", secondary_hue="pink", font=[gr.themes.GoogleFont("Tajawal"), "sans-serif"]), css=css_theme) as iface: | |
gr.Markdown( | |
""" | |
<div style="text-align: center; margin-bottom:20px;"> | |
<h1 style="color: #c70039; font-size: 2.8em; font-weight: bold; margin-bottom:5px;">๐ฌ ุฑูููู ุงูุณููู ุงุฆู ๐ฟ</h1> | |
<p style="font-size: 1.2em; color: #555;">ูุง ููุง ุจู! ุงุถุบุท ุงูุฒุฑ ุชุญุช ูุฎููุง ูุนุทูู ุชูุตูุงุช ุฃููุงู ุนูู ููู ููููุ ู ุน ุดุฑุญ ุจุงูุนุงู ูุฉ ููุด ู ู ูู ุชุฏุฎู ู ุฒุงุฌู.</p> | |
</div>""" | |
) | |
recommend_button = gr.Button("ุนุทูู ุชูุตูุงุช ุฃููุงู ุฌุฏูุฏุฉ!") | |
with gr.Column(elem_id="recommendation-output-column"): # Added elem_id for potential specific styling | |
output_recommendations = gr.HTML(label="๐ ุชูุตูุงุชู ุงููุงุฑูุฉ ูุตูุช ๐") | |
# Initialize LLM when the Blocks context is active, after data loading attempt | |
if data_loaded_successfully: | |
initialize_llm() | |
recommend_button.click(fn=get_recommendations, inputs=None, outputs=[output_recommendations], show_progress="full") | |
gr.Markdown( | |
""" | |
<div style="text-align: center; margin-top: 40px; padding-top: 20px; border-top: 1px solid #eee; font-size: 0.9em; color: #777;"> | |
<p>ูุชู ูู ูู ู ุดุงูุฏุฉ ู ู ุชุนุฉ ู ุน ุฑูููู ุงูุณููู ุงุฆู! ๐ฅโจ</p> | |
</div>""" | |
) | |
if __name__ == "__main__": | |
# Print warnings if critical secrets are missing when running locally | |
if not TMDB_API_KEY: | |
print("\nCRITICAL WARNING: TMDB_API_KEY environment variable is NOT SET.") | |
print("TMDB API calls will fail. Please set it in your .env file or system environment.\n") | |
if not HF_TOKEN: | |
print("\nCRITICAL WARNING: HF_TOKEN environment variable is NOT SET.") | |
print(f"LLM initialization for gated models like {MODEL_NAME} will fail. Please set it.\n") | |
iface.launch(debug=True) # debug=True for local testing, set to False for production |