lenet_mnist / src /demo.py
rzimmerdev's picture
Final product
46627d2
raw
history blame
648 Bytes
import torch
import gradio as gr
from src.predict import predict_interval, load_torch_net
def predict_gradio_canvas(x, net, device="cuda"):
if x is None:
return {0: 0}
else:
x = torch.from_numpy(x.reshape(1, 28, 28)).to(dtype=torch.float32, device=device)
return predict_interval(x, net, device)
def main(device="cuda"):
net = load_torch_net("checkpoints/pytorch/version_1.pt")
gr.Interface(fn=lambda x: predict_gradio_canvas(x, net, device),
inputs="sketchpad",
outputs="label",
live=True).launch()
if __name__ == "__main__":
main(device="cpu")