Spaces:
Running
Running
rzimmerdev
commited on
Commit
β’
46627d2
1
Parent(s):
a0f925f
Final product
Browse files- Dockerfile +0 -3
- README.md +12 -27
- app.py +1 -1
- docs/README.md +27 -0
- main.py +3 -3
- src/demo.py +1 -1
- src/downloader.py +1 -1
Dockerfile
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
FROM python
|
2 |
-
WORKDIR .
|
3 |
-
RUN pip install -r requirements.txt
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -1,27 +1,12 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
* [LabelMe 12 50k](https://www.kaggle.com/datasets/dschettler8845/labelme-12-50k)
|
14 |
-
* [City-Scapes](https://www.cityscapes-dataset.com/dataset-overview/)
|
15 |
-
* [CamVid](http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/)
|
16 |
-
|
17 |
-
|
18 |
-
## References
|
19 |
-
* [DSNet-Fast](https://www.researchgate.net/figure/The-architecture-of-fast-dense-segmentation-network-DSNet-fast-The-encoder-is_fig1_347180093)
|
20 |
-
* [DSNet](https://www.researchgate.net/figure/The-architecture-of-dense-segmentation-network-DSNet-The-encoder-is-a-fully-convolutional_fig1_347180092)
|
21 |
-
|
22 |
-
|
23 |
-
# First Model
|
24 |
-
The first model available and deployed considers a simple 2D image, taken from the MNIST Dataset. Reefer to [_High-Performance Neural Networks
|
25 |
-
for Visual Object Classification_](https://arxiv.org/pdf/1102.0183.pdf) for further details on the dataset.
|
26 |
-
|
27 |
-
The CI/CD process will use the default Github pipeline using the available [Github Actions features](https://github.blog/2022-02-02-build-ci-cd-pipeline-github-actions-four-steps/). The training process will use the MLFLow framework, to cather and track the necessary metrics and log accordingly. Reefer to the [docs](https://mlflow.org/docs/latest/quickstart.html) for further details.
|
|
|
1 |
+
---
|
2 |
+
title: Lenet Mnist
|
3 |
+
emoji: π
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: red
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.15.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
from src.demo import main
|
2 |
|
3 |
-
main()
|
|
|
1 |
from src.demo import main
|
2 |
|
3 |
+
main("cpu")
|
docs/README.md
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# zero-to-hero
|
2 |
+
Create and deploy to production a simple neural network for Computer Vision
|
3 |
+
|
4 |
+
|
5 |
+
# Tools Used
|
6 |
+
* JAX Library for computing gradients, performing tensor operations and scheming the segmentation model
|
7 |
+
* Wandb for metrics and training tools
|
8 |
+
* MLflow for deploying and compiling the model for production
|
9 |
+
* Gradio for interactive user-experience platform within an online platform (Data-ICMC Website).
|
10 |
+
|
11 |
+
|
12 |
+
## Datasets to consider
|
13 |
+
* [LabelMe 12 50k](https://www.kaggle.com/datasets/dschettler8845/labelme-12-50k)
|
14 |
+
* [City-Scapes](https://www.cityscapes-dataset.com/dataset-overview/)
|
15 |
+
* [CamVid](http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/)
|
16 |
+
|
17 |
+
|
18 |
+
## References
|
19 |
+
* [DSNet-Fast](https://www.researchgate.net/figure/The-architecture-of-fast-dense-segmentation-network-DSNet-fast-The-encoder-is_fig1_347180093)
|
20 |
+
* [DSNet](https://www.researchgate.net/figure/The-architecture-of-dense-segmentation-network-DSNet-The-encoder-is-a-fully-convolutional_fig1_347180092)
|
21 |
+
|
22 |
+
|
23 |
+
# First Model
|
24 |
+
The first model available and deployed considers a simple 2D image, taken from the MNIST Dataset. Reefer to [_High-Performance Neural Networks
|
25 |
+
for Visual Object Classification_](https://arxiv.org/pdf/1102.0183.pdf) for further details on the dataset.
|
26 |
+
|
27 |
+
The CI/CD process will use the default Github pipeline using the available [Github Actions features](https://github.blog/2022-02-02-build-ci-cd-pipeline-github-actions-four-steps/). The training process will use the MLFLow framework, to cather and track the necessary metrics and log accordingly. Reefer to the [docs](https://mlflow.org/docs/latest/quickstart.html) for further details.
|
main.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
import torch
|
2 |
|
3 |
-
from models import CNN
|
4 |
-
from dataset import DatasetMNIST, download_mnist
|
5 |
-
from train import get_dataloaders, train_net_manually, train_net_lightning
|
6 |
|
7 |
|
8 |
def main(device):
|
|
|
1 |
import torch
|
2 |
|
3 |
+
from src.models import CNN
|
4 |
+
from src.dataset import DatasetMNIST, download_mnist
|
5 |
+
from src.train import get_dataloaders, train_net_manually, train_net_lightning
|
6 |
|
7 |
|
8 |
def main(device):
|
src/demo.py
CHANGED
@@ -12,7 +12,7 @@ def predict_gradio_canvas(x, net, device="cuda"):
|
|
12 |
|
13 |
|
14 |
def main(device="cuda"):
|
15 |
-
net = load_torch_net("
|
16 |
|
17 |
gr.Interface(fn=lambda x: predict_gradio_canvas(x, net, device),
|
18 |
inputs="sketchpad",
|
|
|
12 |
|
13 |
|
14 |
def main(device="cuda"):
|
15 |
+
net = load_torch_net("checkpoints/pytorch/version_1.pt")
|
16 |
|
17 |
gr.Interface(fn=lambda x: predict_gradio_canvas(x, net, device),
|
18 |
inputs="sketchpad",
|
src/downloader.py
CHANGED
@@ -15,7 +15,7 @@ def download_dataset(name='cityscapes', path='downloads/downloads'):
|
|
15 |
if name == 'cityscapes':
|
16 |
download_cityscapes(path)
|
17 |
elif name == "mnist":
|
18 |
-
|
19 |
else:
|
20 |
raise NotImplementedError
|
21 |
|
|
|
15 |
if name == 'cityscapes':
|
16 |
download_cityscapes(path)
|
17 |
elif name == "mnist":
|
18 |
+
download_mnist(path)
|
19 |
else:
|
20 |
raise NotImplementedError
|
21 |
|