Spaces:
Sleeping
Sleeping
Disable SC
Browse files- patch_sdxl.py +4 -30
patch_sdxl.py
CHANGED
@@ -1,6 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
import inspect
|
5 |
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
|
6 |
|
@@ -29,7 +26,6 @@ from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOut
|
|
29 |
|
30 |
|
31 |
|
32 |
-
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
33 |
from transformers import CLIPFeatureExtractor
|
34 |
import numpy as np
|
35 |
import torch
|
@@ -40,27 +36,6 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
40 |
torch_device = device
|
41 |
torch_dtype = torch.float16
|
42 |
|
43 |
-
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
44 |
-
"CompVis/stable-diffusion-safety-checker"
|
45 |
-
).to(device)
|
46 |
-
feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
47 |
-
"openai/clip-vit-base-patch32"
|
48 |
-
)
|
49 |
-
|
50 |
-
def check_nsfw_images(
|
51 |
-
images: list[Image.Image],
|
52 |
-
) -> list[bool]:
|
53 |
-
safety_checker_input = feature_extractor(images, return_tensors="pt").to(device)
|
54 |
-
images_np = [np.array(img) for img in images]
|
55 |
-
|
56 |
-
_, has_nsfw_concepts = safety_checker(
|
57 |
-
images=images_np,
|
58 |
-
clip_input=safety_checker_input.pixel_values.to(torch_device),
|
59 |
-
)
|
60 |
-
return has_nsfw_concepts
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
|
65 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
66 |
|
@@ -569,12 +544,11 @@ class SDEmb(StableDiffusionXLPipeline):
|
|
569 |
# apply watermark if available
|
570 |
if self.watermark is not None:
|
571 |
image = self.watermark.apply_watermark(image)
|
572 |
-
|
573 |
image = self.image_processor.postprocess(image, output_type=output_type)
|
574 |
-
maybe_nsfw = any(check_nsfw_images(image))
|
575 |
-
if maybe_nsfw:
|
576 |
-
|
577 |
-
|
578 |
|
579 |
# Offload all models
|
580 |
self.maybe_free_model_hooks()
|
|
|
|
|
|
|
|
|
1 |
import inspect
|
2 |
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
|
3 |
|
|
|
26 |
|
27 |
|
28 |
|
|
|
29 |
from transformers import CLIPFeatureExtractor
|
30 |
import numpy as np
|
31 |
import torch
|
|
|
36 |
torch_device = device
|
37 |
torch_dtype = torch.float16
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
41 |
|
|
|
544 |
# apply watermark if available
|
545 |
if self.watermark is not None:
|
546 |
image = self.watermark.apply_watermark(image)
|
|
|
547 |
image = self.image_processor.postprocess(image, output_type=output_type)
|
548 |
+
#maybe_nsfw = any(check_nsfw_images(image))
|
549 |
+
#if maybe_nsfw:
|
550 |
+
# print('This image could be NSFW so we return a blank image.')
|
551 |
+
# return StableDiffusionXLPipelineOutput(images=[Image.new('RGB', (1024, 1024))])
|
552 |
|
553 |
# Offload all models
|
554 |
self.maybe_free_model_hooks()
|