rynmurdock's picture
Update app.py
68afba5
raw
history blame
18.6 kB
# TODO save & restart from (if it exists) dataframe parquet
import torch
# lol
DEVICE = 'cuda'
STEPS = 6
output_hidden_state = False
device = "cuda"
dtype = torch.bfloat16
import matplotlib.pyplot as plt
import matplotlib
from sklearn.linear_model import Ridge
import imageio
import gradio as gr
import numpy as np
from sklearn.svm import SVC
from sklearn.inspection import permutation_importance
from sklearn import preprocessing
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
import random
import time
from PIL import Image
from safety_checker_improved import maybe_nsfw
torch.set_grad_enabled(False)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
prevs_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating', 'latest_user_to_rate'])
import spaces
prompt_list = [p for p in list(set(
pd.read_csv('./twitter_prompts.csv').iloc[:, 1].tolist())) if type(p) == str]
start_time = time.time()
####################### Setup Model
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, LCMScheduler, AutoencoderTiny, UNet2DConditionModel, AutoencoderKL
from transformers import CLIPTextModel
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
from transformers import CLIPVisionModelWithProjection
import uuid
import av
def write_video(file_name, images, fps=17):
print('Saving')
container = av.open(file_name, mode="w")
stream = container.add_stream("h264", rate=fps)
# stream.options = {'preset': 'faster'}
stream.thread_count = 0
stream.width = 512
stream.height = 512
stream.pix_fmt = "yuv420p"
for img in images:
img = np.array(img)
img = np.round(img).astype(np.uint8)
frame = av.VideoFrame.from_ndarray(img, format="rgb24")
for packet in stream.encode(frame):
container.mux(packet)
# Flush stream
for packet in stream.encode():
container.mux(packet)
# Close the file
container.close()
print('Saved')
image_encoder = CLIPVisionModelWithProjection.from_pretrained("h94/IP-Adapter", subfolder="sdxl_models/image_encoder", torch_dtype=dtype).to(DEVICE)
#vae = AutoencoderTiny.from_pretrained("madebyollin/taesd", torch_dtype=dtype)
# vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=dtype)
# vae = compile_unet(vae, config=config)
#finetune_path = '''/home/ryn_mote/Misc/finetune-sd1.5/dreambooth-model best'''''
#unet = UNet2DConditionModel.from_pretrained(finetune_path+'/unet/').to(dtype)
#text_encoder = CLIPTextModel.from_pretrained(finetune_path+'/text_encoder/').to(dtype)
unet = UNet2DConditionModel.from_pretrained('rynmurdock/Sea_Claws', subfolder='unet').to(dtype)
text_encoder = CLIPTextModel.from_pretrained('rynmurdock/Sea_Claws', subfolder='text_encoder').to(dtype)
adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")
pipe = AnimateDiffPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", motion_adapter=adapter, image_encoder=image_encoder, torch_dtype=dtype, unet=unet, text_encoder=text_encoder)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora",)
pipe.set_adapters(["lcm-lora"], [.9])
pipe.fuse_lora()
#pipe = AnimateDiffPipeline.from_pretrained('emilianJR/epiCRealism', torch_dtype=dtype, image_encoder=image_encoder)
#pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
#repo = "ByteDance/AnimateDiff-Lightning"
#ckpt = f"animatediff_lightning_4step_diffusers.safetensors"
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15_vit-G.bin", map_location='cpu')
# This IP adapter improves outputs substantially.
pipe.set_ip_adapter_scale(.8)
pipe.unet.fuse_qkv_projections()
#pipe.enable_free_init(method="gaussian", use_fast_sampling=True)
pipe.to(device=DEVICE)
#pipe.unet = torch.compile(pipe.unet)
#pipe.vae = torch.compile(pipe.vae)
#im_embs = torch.zeros(1, 1, 1, 1280, device=DEVICE, dtype=dtype)
#output = pipe(prompt='a person', guidance_scale=0, added_cond_kwargs={}, ip_adapter_image_embeds=[im_embs], num_inference_steps=STEPS)
#leave_im_emb, _ = pipe.encode_image(
# output.frames[0][len(output.frames[0])//2], DEVICE, 1, output_hidden_state
#)
#assert len(output.frames[0]) == 16
#leave_im_emb.detach().to('cpu')
@spaces.GPU(duration=10)
def generate_gpu(in_im_embs):
in_im_embs = in_im_embs.to('cuda').unsqueeze(0).unsqueeze(0)
#im_embs = torch.cat((torch.zeros(1, 1280, device=DEVICE, dtype=dtype), in_im_embs), 0)
output = pipe(prompt='a scene', guidance_scale=0, added_cond_kwargs={}, ip_adapter_image_embeds=[in_im_embs], num_inference_steps=STEPS)
im_emb, _ = pipe.encode_image(
output.frames[0][len(output.frames[0])//2], DEVICE, 1, output_hidden_state
)
im_emb = im_emb.detach().to('cpu').to(torch.float32)
return output, im_emb
def generate(in_im_embs):
output, im_emb = generate_gpu(in_im_embs)
nsfw = maybe_nsfw(output.frames[0][len(output.frames[0])//2])
name = str(uuid.uuid4()).replace("-", "")
path = f"/tmp/{name}.mp4"
if nsfw:
gr.Warning("NSFW content detected.")
# TODO could return an automatic dislike of auto dislike on the backend for neither as well; just would need refactoring.
return None, im_emb
output.frames[0] = output.frames[0] + list(reversed(output.frames[0]))
write_video(path, output.frames[0])
return path, im_emb
#######################
# TODO add to state instead of shared across all
glob_idx = 0
# TODO
# We can keep a df of media paths, embeddings, and user ratings.
# We can drop by lowest user ratings to keep enough RAM available when we get too many rows.
# We can continuously update by who is most recently active in the background & server as we go, plucking using "has been seen" and similarity
# to user embeds
def get_user_emb(embs, ys):
# handle case where every instance of calibration videos is 'Neither' or 'Like' or 'Dislike'
if len(list(set(ys))) <= 1:
embs.append(.01*torch.randn(1280))
embs.append(.01*torch.randn(1280))
ys.append(0)
ys.append(1)
print('Fixing only one feedback class available.\n')
indices = list(range(len(embs)))
# sample only as many negatives as there are positives
pos_indices = [i for i in indices if ys[i] == 1]
neg_indices = [i for i in indices if ys[i] == 0]
#lower = min(len(pos_indices), len(neg_indices))
#neg_indices = random.sample(neg_indices, lower)
#pos_indices = random.sample(pos_indices, lower)
print(len(neg_indices), len(pos_indices))
# we may have just encountered a rare multi-threading diffusers issue (https://github.com/huggingface/diffusers/issues/5749);
# this ends up adding a rating but losing an embedding, it seems.
# let's take off a rating if so to continue without indexing errors.
if len(ys) > len(embs):
print('ys are longer than embs; popping latest rating')
ys.pop(-1)
feature_embs = np.array(torch.stack([embs[i].squeeze().to('cpu') for i in indices]).to('cpu'))
#scaler = preprocessing.StandardScaler().fit(feature_embs)
#feature_embs = scaler.transform(feature_embs)
chosen_y = np.array([ys[i] for i in indices])
print('Gathering coefficients')
#lin_class = Ridge(fit_intercept=False).fit(feature_embs, chosen_y)
lin_class = SVC(max_iter=50000, kernel='linear', C=.1, class_weight='balanced').fit(feature_embs, chosen_y)
coef_ = torch.tensor(lin_class.coef_, dtype=torch.double).detach().to('cpu')
coef_ = coef_ / coef_.abs().max() * 3
print('Gathered')
w = 1# if len(embs) % 2 == 0 else 0
im_emb = w * coef_.to(dtype=dtype)
return im_emb
def pluck_img(user_id, user_emb):
print(user_id, 'user_id')
not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) == None for i in prevs_df.iterrows()]]
rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) != None for i in prevs_df.iterrows()]]
while len(not_rated_rows) == 0:
not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) == None for i in prevs_df.iterrows()]]
rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) != None for i in prevs_df.iterrows()]]
time.sleep(.01)
# TODO optimize this lol
best_sim = -100000
for i in not_rated_rows.iterrows():
# TODO sloppy .to but it is 3am.
sim = torch.cosine_similarity(i[1]['embeddings'].detach().to('cpu'), user_emb.detach().to('cpu'))
if sim > best_sim:
best_sim = sim
best_row = i[1]
img = best_row['paths']
return img
def background_next_image():
global prevs_df
# only let it get N (maybe 3) ahead of the user
not_rated_rows = prevs_df[[i[1]['user:rating'] == {' ': ' '} for i in prevs_df.iterrows()]]
rated_rows = prevs_df[[i[1]['user:rating'] != {' ': ' '} for i in prevs_df.iterrows()]]
while len(not_rated_rows) > 8 or len(rated_rows) < 4:
not_rated_rows = prevs_df[[i[1]['user:rating'] == {' ': ' '} for i in prevs_df.iterrows()]]
rated_rows = prevs_df[[i[1]['user:rating'] != {' ': ' '} for i in prevs_df.iterrows()]]
time.sleep(.01)
print(rated_rows['latest_user_to_rate'])
latest_user_id = rated_rows.iloc[-1]['latest_user_to_rate']
rated_rows = prevs_df[[i[1]['user:rating'].get(latest_user_id, None) is not None for i in prevs_df.iterrows()]]
print(latest_user_id)
embs, ys = pluck_embs_ys(latest_user_id)
user_emb = get_user_emb(embs, ys)
img, embs = generate(user_emb)
tmp_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating', 'latest_user_to_rate'])
tmp_df['paths'] = [img]
tmp_df['embeddings'] = [embs]
tmp_df['user:rating'] = [{' ': ' '}]
prevs_df = pd.concat((prevs_df, tmp_df))
# we can free up storage by deleting the image
if len(prevs_df) > 50:
oldest_path = prevs_df.iloc[0]['paths']
if os.path.isfile(oldest_path):
os.remove(oldest_path)
else:
# If it fails, inform the user.
print("Error: %s file not found" % oldest_path)
# only keep 50 images & embeddings & ips, then remove oldest
prevs_df = prevs_df.iloc[1:]
def pluck_embs_ys(user_id):
rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) != None for i in prevs_df.iterrows()]]
not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) == None for i in prevs_df.iterrows()]]
while len(not_rated_rows) == 0:
not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) == None for i in prevs_df.iterrows()]]
rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) != None for i in prevs_df.iterrows()]]
time.sleep(.01)
embs = rated_rows['embeddings'].to_list()
ys = [i[user_id] for i in rated_rows['user:rating'].to_list()]
print('embs', 'ys', embs, ys)
return embs, ys
def next_image(calibrate_prompts, user_id):
global glob_idx
glob_idx = glob_idx + 1
with torch.no_grad():
if len(calibrate_prompts) > 0:
print('######### Calibrating with sample media #########')
cal_video = calibrate_prompts.pop(0)
image = prevs_df[prevs_df['paths'] == cal_video]['paths'].to_list()[0]
return image, calibrate_prompts
else:
print('######### Roaming #########')
embs, ys = pluck_embs_ys(user_id)
user_emb = get_user_emb(embs, ys)
image = pluck_img(user_id, user_emb)
return image, calibrate_prompts
def start(_, calibrate_prompts, user_id, request: gr.Request):
image, calibrate_prompts = next_image(calibrate_prompts, user_id)
return [
gr.Button(value='Like (L)', interactive=True),
gr.Button(value='Neither (Space)', interactive=True),
gr.Button(value='Dislike (A)', interactive=True),
gr.Button(value='Start', interactive=False),
image,
calibrate_prompts
]
def choose(img, choice, calibrate_prompts, user_id, request: gr.Request):
global prevs_df
if choice == 'Like (L)':
choice = 1
elif choice == 'Neither (Space)':
img, calibrate_prompts = next_image(calibrate_prompts, user_id)
return img, calibrate_prompts
else:
choice = 0
# if we detected NSFW, leave that area of latent space regardless of how they rated chosen.
# TODO skip allowing rating & just continue
if img == None:
print('NSFW -- choice is disliked')
choice = 0
# TODO clean up
old_d = prevs_df.loc[[p.split('/')[-1] in img for p in prevs_df['paths'].to_list()], 'user:rating'][0]
old_d[user_id] = choice
prevs_df.loc[[p.split('/')[-1] in img for p in prevs_df['paths'].to_list()], 'user:rating'][0] = old_d
prevs_df.loc[[p.split('/')[-1] in img for p in prevs_df['paths'].to_list()], 'latest_user_to_rate'] = [user_id]
print('full_df, prevs_df', prevs_df, prevs_df['latest_user_to_rate'])
img, calibrate_prompts = next_image(calibrate_prompts, user_id)
return img, calibrate_prompts
css = '''.gradio-container{max-width: 700px !important}
#description{text-align: center}
#description h1, #description h3{display: block}
#description p{margin-top: 0}
.fade-in-out {animation: fadeInOut 3s forwards}
@keyframes fadeInOut {
0% {
background: var(--bg-color);
}
100% {
background: var(--button-secondary-background-fill);
}
}
'''
js_head = '''
<script>
document.addEventListener('keydown', function(event) {
if (event.key === 'a' || event.key === 'A') {
// Trigger click on 'dislike' if 'A' is pressed
document.getElementById('dislike').click();
} else if (event.key === ' ' || event.keyCode === 32) {
// Trigger click on 'neither' if Spacebar is pressed
document.getElementById('neither').click();
} else if (event.key === 'l' || event.key === 'L') {
// Trigger click on 'like' if 'L' is pressed
document.getElementById('like').click();
}
});
function fadeInOut(button, color) {
button.style.setProperty('--bg-color', color);
button.classList.remove('fade-in-out');
void button.offsetWidth; // This line forces a repaint by accessing a DOM property
button.classList.add('fade-in-out');
button.addEventListener('animationend', () => {
button.classList.remove('fade-in-out'); // Reset the animation state
}, {once: true});
}
document.body.addEventListener('click', function(event) {
const target = event.target;
if (target.id === 'dislike') {
fadeInOut(target, '#ff1717');
} else if (target.id === 'like') {
fadeInOut(target, '#006500');
} else if (target.id === 'neither') {
fadeInOut(target, '#cccccc');
}
});
</script>
'''
with gr.Blocks(css=css, head=js_head) as demo:
gr.Markdown('''# Blue Tigers
### Generative Recommenders for Exporation of Video
Explore the latent space without text prompts based on your preferences. Learn more on [the write-up](https://rynmurdock.github.io/posts/2024/3/generative_recomenders/).
''', elem_id="description")
user_id = gr.State(int(torch.randint(2**6, (1,))[0]))
print('USER_ID: ',user_id)
calibrate_prompts = gr.State([
'./first.mp4',
'./second.mp4',
'./third.mp4',
'./fourth.mp4',
'./fifth.mp4',
'./sixth.mp4',
])
def l():
return None
with gr.Row(elem_id='output-image'):
img = gr.Video(
label='Lightning',
autoplay=True,
interactive=False,
height=512,
width=512,
include_audio=False,
elem_id="video_output"
)
img.play(l, js='''document.querySelector('[data-testid="Lightning-player"]').loop = true''')
with gr.Row(equal_height=True):
b3 = gr.Button(value='Dislike (A)', interactive=False, elem_id="dislike")
b2 = gr.Button(value='Neither (Space)', interactive=False, elem_id="neither")
b1 = gr.Button(value='Like (L)', interactive=False, elem_id="like")
b1.click(
choose,
[img, b1, calibrate_prompts, user_id],
[img, calibrate_prompts],
)
b2.click(
choose,
[img, b2, calibrate_prompts, user_id],
[img, calibrate_prompts],
)
b3.click(
choose,
[img, b3, calibrate_prompts, user_id],
[img, calibrate_prompts],
)
with gr.Row():
b4 = gr.Button(value='Start')
b4.click(start,
[b4, calibrate_prompts, user_id],
[b1, b2, b3, b4, img, calibrate_prompts]
)
with gr.Row():
html = gr.HTML('''<div style='text-align:center; font-size:20px'>You will calibrate for several videos and then roam. </ div><br><br><br>
<div style='text-align:center; font-size:14px'>Note that while the AnimateLCM model with NSFW filtering is unlikely to produce NSFW images, this may still occur, and users should avoid NSFW content when rating.
</ div>
<br><br>
<div style='text-align:center; font-size:14px'>Thanks to @multimodalart for their contributions to the demo, esp. the interface and @maxbittker for feedback.
</ div>''')
scheduler = BackgroundScheduler()
scheduler.add_job(func=background_next_image, trigger="interval", seconds=1)
scheduler.start()
def encode_space(x):
im_emb, _ = pipe.encode_image(
image, 'cpu', 1, output_hidden_state
)
return im_emb.detach().to('cpu').to(torch.float32)
# prep our calibration prompts
for im in [
'./first.mp4',
'./second.mp4',
'./third.mp4',
'./fourth.mp4',
'./fifth.mp4',
'./sixth.mp4',
]:
tmp_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating'])
tmp_df['paths'] = [im]
image = list(imageio.imiter(im))
image = image[len(image)//2]
im_emb = encode_space(image)
tmp_df['embeddings'] = [im_emb.detach().to('cpu')]
tmp_df['user:rating'] = [{' ': ' '}]
prevs_df = pd.concat((prevs_df, tmp_df))
demo.launch(share=True)