steerers / train_ksae.py
ryanjg's picture
init upload
33b542e verified
from types import SimpleNamespace
import sys
import torch
sys.path.append("..")
from training.config import SDSAERunnerConfig
from training.sd_activations_store import SDActivationsStore
from typing import Optional
import wandb
import tqdm
from training.k_sparse_autoencoder import SparseAutoencoder, unit_norm_decoder_, unit_norm_decoder_grad_adjustment_
import argparse
def weighted_average(points: torch.Tensor, weights: torch.Tensor):
weights = weights / weights.sum()
return (points * weights.view(-1, 1)).sum(dim=0)
@torch.no_grad()
def geometric_median_objective(
median: torch.Tensor, points: torch.Tensor, weights: torch.Tensor
) -> torch.Tensor:
norms = torch.linalg.norm(points - median.view(1, -1), dim=1) # type: ignore
return (norms * weights).sum()
def compute_geometric_median(
points: torch.Tensor,
weights: Optional[torch.Tensor] = None,
eps: float = 1e-6,
maxiter: int = 100,
ftol: float = 1e-20,
do_log: bool = False,
):
with torch.no_grad():
if weights is None:
weights = torch.ones((points.shape[0],), device=points.device)
new_weights = weights
median = weighted_average(points, weights)
objective_value = geometric_median_objective(median, points, weights)
if do_log:
logs = [objective_value]
else:
logs = None
early_termination = False
pbar = tqdm.tqdm(range(maxiter))
for _ in pbar:
prev_obj_value = objective_value
norms = torch.linalg.norm(points - median.view(1, -1), dim=1) # type: ignore
new_weights = weights / torch.clamp(norms, min=eps)
median = weighted_average(points, new_weights)
objective_value = geometric_median_objective(median, points, weights)
if logs is not None:
logs.append(objective_value)
if abs(prev_obj_value - objective_value) <= ftol * objective_value:
early_termination = True
break
pbar.set_description(f"Objective value: {objective_value:.4f}")
median = weighted_average(points, new_weights) # allow autodiff to track it
return SimpleNamespace(
median=median,
new_weights=new_weights,
termination=(
"function value converged within tolerance"
if early_termination
else "maximum iterations reached"
),
logs=logs,
)
class FeaturesStats:
def __init__(self, dim, logger, device):
self.dim = dim
self.logger = logger
self.device = device
self.reinit()
def reinit(self):
self.n_activated = torch.zeros(self.dim, dtype=torch.long, device=self.device)
self.n = 0
def update(self, inds):
self.n += inds.shape[0]
inds = inds.flatten().detach()
self.n_activated.scatter_add_(0, inds, torch.ones_like(inds))
def log(self):
self.logger.logkv('activated', (self.n_activated / self.n + 1e-9).log10().cpu().numpy())
RANK = 0
class Logger:
def __init__(self, sae_name, **kws):
self.vals = {}
self.enabled = (RANK == 0) and not kws.pop("dummy", False)
self.sae_name = sae_name
def logkv(self, k, v):
if self.enabled:
self.vals[f'{k}'] = v.detach() if isinstance(v, torch.Tensor) else v
return v
def dumpkvs(self, step):
if self.enabled:
wandb.log(self.vals, step=step)
self.vals = {}
def init_from_data_(ae, stats_acts_sample):
ae.pre_bias.data = (
compute_geometric_median(stats_acts_sample[:32768].float().cpu()).median.to(ae.device).float()
)
def explained_variance(recons, x):
# Compute the variance of the difference
diff = x - recons
diff_var = torch.var(diff, dim=0, unbiased=False)
# Compute the variance of the original tensor
x_var = torch.var(x, dim=0, unbiased=False)
# Avoid division by zero
explained_var = 1 - diff_var / (x_var + 1e-8)
return explained_var.mean()
def train_ksae_on_sd(
k_sparse_autoencoder: SparseAutoencoder,
activation_store: SDActivationsStore,
cfg: SDSAERunnerConfig
):
batch_size =cfg.batch_size
total_training_tokens = cfg.total_training_tokens
logger = Logger(
sae_name=cfg.sae_name,
dummy=False,
)
n_training_steps = 0
n_training_tokens = 0
optimizer = torch.optim.Adam(k_sparse_autoencoder.parameters(), lr=cfg.lr, eps=cfg.eps, fused=True)
stats_acts_sample = torch.cat(
[activation_store.next_batch().cpu() for _ in range(8)], dim=0
)
init_from_data_(k_sparse_autoencoder, stats_acts_sample)
mse_scale = (
1 / ((stats_acts_sample.float().mean(dim=0) - stats_acts_sample.float()) ** 2).mean()
)
mse_scale = mse_scale.item()
k_sparse_autoencoder.mse_scale = mse_scale
if cfg.log_to_wandb:
wandb.init(
config = vars(cfg),
project=cfg.wandb_project,
tags = [
str(cfg.batch_size),
cfg.block_name,
str(cfg.d_in),
str(cfg.k),
str(cfg.auxk),
str(cfg.lr),
]
)
fstats = FeaturesStats(cfg.d_sae, logger, cfg.device)
k_sparse_autoencoder.train()
k_sparse_autoencoder.to(cfg.device)
pbar = tqdm.tqdm(total=total_training_tokens, desc="Training SAE")
while n_training_tokens < total_training_tokens:
optimizer.zero_grad()
sae_in = activation_store.next_batch().to(cfg.device)
sae_out, loss, info = k_sparse_autoencoder(
sae_in,
)
n_training_tokens += batch_size
with torch.no_grad():
fstats.update(info['inds'])
bs = sae_in.shape[0]
logger.logkv('l0', info['l0'])
logger.logkv('not-activated 1e4', (k_sparse_autoencoder.stats_last_nonzero > 1e4 / bs).mean(dtype=float).item())
logger.logkv('not-activated 1e6', (k_sparse_autoencoder.stats_last_nonzero > 1e6 / bs).mean(dtype=float).item())
logger.logkv('not-activated 1e7', (k_sparse_autoencoder.stats_last_nonzero > 1e7 / bs).mean(dtype=float).item())
logger.logkv('explained variance', explained_variance(sae_out, sae_in))
logger.logkv('l2_div', (torch.linalg.norm(sae_out, dim=1) / torch.linalg.norm(sae_in, dim=1)).mean())
logger.logkv('train_recons', info['train_recons'])
logger.logkv('train_maxk_recons', info['train_maxk_recons'])
if cfg.log_to_wandb and ((n_training_steps + 1) % cfg.wandb_log_frequency == 0):
fstats.log()
fstats.reinit()
if "cuda" in str(cfg.device):
torch.cuda.empty_cache()
if ((n_training_steps + 1) % cfg.save_interval == 0):
k_sparse_autoencoder.save_to_disk(f"{cfg.save_path}/{n_training_steps + 1}")
pbar.set_description(
f"{n_training_steps}| MSE Loss {loss.item():.3f}"
)
pbar.update(batch_size)
loss.backward()
unit_norm_decoder_(k_sparse_autoencoder)
unit_norm_decoder_grad_adjustment_(k_sparse_autoencoder)
optimizer.step()
n_training_steps += 1
logger.dumpkvs(n_training_steps)
return k_sparse_autoencoder
def main(cfg):
k_sparse_autoencoder = SparseAutoencoder(n_dirs_local=cfg.d_sae,
d_model=cfg.d_in,
k=cfg.k,
auxk=cfg.auxk,
dead_steps_threshold=cfg.dead_toks_threshold //cfg.batch_size,
auxk_coef = cfg.auxk_coef)
activations_loader = SDActivationsStore(path_to_chunks=cfg.paths_to_latents,
block_name=cfg.block_name,
batch_size=cfg.batch_size)
if cfg.log_to_wandb:
wandb.init(project=cfg.wandb_project, config=cfg, name=cfg.run_name)
# train SAE
k_sparse_autoencoder = train_ksae_on_sd(
k_sparse_autoencoder, activations_loader, cfg
)
k_sparse_autoencoder.save_to_disk(f"{cfg.save_path}/final") # # save sae to checkpoints folder
if cfg.log_to_wandb:
wandb.finish()
return k_sparse_autoencoder
def parse_args():
parser = argparse.ArgumentParser(description="Parse SDSAERunnerConfig parameters")
# Add arguments with defaults
parser.add_argument('--paths_to_latents', type=str, default="I2P", help="Directory for extracted features")
parser.add_argument('--block_name', type=str, default="text_encoder.text_model.encoder.layers.10.28", help="Block name")
parser.add_argument('--use_cached_activations', action='store_true', help="Use cached activations", default=True)
parser.add_argument('--d_in', type=int, default=2048, help="Input dimensionality")
parser.add_argument('--auxk', type=str, default=256, help='Auxiliary k coefficient (auxk_coef)')
# SAE Parameters
parser.add_argument('--expansion_factor', type=int, default=32, help="Expansion factor")
parser.add_argument('--b_dec_init_method', type=str, default='mean', help="Decoder initialization method")
parser.add_argument('--k', type=int, default=32, help="Number of clusters")
# Training Parameters
parser.add_argument('--lr', type=float, default=0.0004, help="Learning rate")
parser.add_argument('--lr_scheduler_name', type=str, default='constantwithwarmup', help="Learning rate scheduler name")
parser.add_argument('--batch_size', type=int, default=4096, help="Batch size")
parser.add_argument('--lr_warm_up_steps', type=int, default=500, help="Number of warm-up steps")
parser.add_argument('--epoch', type=int, default=1000, help="Total training epochs")
parser.add_argument('--total_training_tokens', type=int, default=83886080, help="Total training tokens")
parser.add_argument('--dead_feature_threshold', type=float, default=1e-6, help="Dead feature threshold")
parser.add_argument('--auxk_coef', type=str, default="1/32", help='Auxiliary k coefficient (auxk_coef)')
# WANDB
parser.add_argument('--log_to_wandb', action='store_true', default=True, help="Log to WANDB")
parser.add_argument('--wandb_project', type=str, default='steerers', help="WANDB project name")
parser.add_argument('--wandb_entity', type=str, default=None, help="WANDB entity")
parser.add_argument('--wandb_log_frequency', type=int, default=500, help="WANDB log frequency")
# Misc
parser.add_argument('--device', type=str, default="cuda", help="Device to use (e.g., cuda, cpu)")
parser.add_argument('--seed', type=int, default=42, help="Random seed")
parser.add_argument('--checkpoint_path', type=str, default="Checkpoints", help="Checkpoint path")
parser.add_argument('--dtype', type=str, default="float32", help="Data type (e.g., float32)")
parser.add_argument('--save_interval', type=int, default=5000, help='Save interval (save_interval)')
return parser.parse_args()
def args_to_config(args):
return SDSAERunnerConfig(
paths_to_latents=args.paths_to_latents,
block_name=args.block_name,
use_cached_activations=args.use_cached_activations,
d_in=args.d_in,
expansion_factor=args.expansion_factor,
b_dec_init_method=args.b_dec_init_method,
k=args.k,
auxk = args.auxk,
lr=args.lr,
lr_scheduler_name=args.lr_scheduler_name,
batch_size=args.batch_size,
lr_warm_up_steps=args.lr_warm_up_steps,
total_training_tokens=args.total_training_tokens,
dead_feature_threshold=args.dead_feature_threshold,
log_to_wandb=args.log_to_wandb,
wandb_project=args.wandb_project,
wandb_entity=args.wandb_entity,
wandb_log_frequency=args.wandb_log_frequency,
device=args.device,
seed=args.seed,
save_path_base=args.checkpoint_path,
dtype=getattr(torch, args.dtype)
)
if __name__ == "__main__":
args = parse_args()
cfg = args_to_config(args)
print(cfg)
torch.cuda.empty_cache()
k_sparse_autoencoder = main(cfg)