Spaces:
Running
Running
import random | |
from langchain_community.vectorstores import FAISS | |
from langchain_openai import OpenAIEmbeddings | |
from langchain.chains import create_retrieval_chain | |
from langchain.chains.combine_documents import create_stuff_documents_chain | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain.retrievers import EnsembleRetriever | |
from ai_config import n_of_questions, openai_api_key | |
from prompt_instructions import get_interview_prompt_sarah, get_interview_prompt_aaron, get_report_prompt | |
n_of_questions = n_of_questions() | |
def setup_knowledge_retrieval(llm, language='english', voice='Sarah'): | |
embedding_model = OpenAIEmbeddings(openai_api_key=openai_api_key) | |
documents_faiss_index = FAISS.load_local("knowledge/faiss_index_all_documents", embedding_model, | |
allow_dangerous_deserialization=True) | |
documents_retriever = documents_faiss_index.as_retriever() | |
combined_retriever = EnsembleRetriever( | |
retrievers=[documents_retriever] | |
) | |
if voice == 'Sarah': | |
interview_prompt = ChatPromptTemplate.from_messages([ | |
("system", get_interview_prompt_sarah(language, n_of_questions)), | |
("human", "{input}") | |
]) | |
else: | |
interview_prompt = ChatPromptTemplate.from_messages([ | |
("system", get_interview_prompt_aaron(language, n_of_questions)), | |
("human", "{input}") | |
]) | |
report_prompt = ChatPromptTemplate.from_messages([ | |
("system", get_report_prompt(language)), | |
("human", "Please provide a concise clinical report based on the interview.") | |
]) | |
interview_chain = create_stuff_documents_chain(llm, interview_prompt) | |
report_chain = create_stuff_documents_chain(llm, report_prompt) | |
interview_retrieval_chain = create_retrieval_chain(combined_retriever, interview_chain) | |
report_retrieval_chain = create_retrieval_chain(combined_retriever, report_chain) | |
return interview_retrieval_chain, report_retrieval_chain, combined_retriever | |
def get_next_response(interview_chain, message, history, question_count): | |
combined_history = "\n".join(history) | |
# Check if the interview should end | |
if question_count >= n_of_questions: | |
return "Thank you for your responses. I will now prepare a report." | |
# Generate the next question | |
result = interview_chain.invoke({ | |
"input": f"Based on the patient's last response: '{message}', and considering the full interview history, ask a specific, detailed question that hasn't been asked before and is relevant to the patient's situation.", | |
"history": combined_history, | |
"question_number": question_count + 1 # Increment question number here | |
}) | |
next_question = result.get("answer", "Could you provide more details on that?") | |
# Update history with the new question and response | |
history.append(f"Q{question_count + 1}: {next_question}") | |
history.append(f"A{question_count + 1}: {message}") | |
return next_question | |
def generate_report(report_chain, history, language): | |
combined_history = "\n".join(history) | |
result = report_chain.invoke({ | |
"input": "Please provide a clinical report based on the interview.", | |
"history": combined_history, | |
"language": language | |
}) | |
return result.get("answer", "Unable to generate report due to insufficient information.") | |
def get_initial_question(interview_chain): | |
result = interview_chain.invoke({ | |
"input": "What should be the first question in a clinical psychology interview?", | |
"history": "", | |
"question_number": 1 | |
}) | |
return result.get("answer", "Could you tell me a little bit about yourself and what brings you here today?") | |