import random from langchain_community.vectorstores import FAISS from langchain_openai import OpenAIEmbeddings from langchain.chains import create_retrieval_chain from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_core.prompts import ChatPromptTemplate from langchain.retrievers import EnsembleRetriever from ai_config import n_of_questions, openai_api_key from prompt_instructions import get_interview_prompt_sarah, get_interview_prompt_aaron, get_report_prompt n_of_questions = n_of_questions() def setup_knowledge_retrieval(llm, language='english', voice='Sarah'): embedding_model = OpenAIEmbeddings(openai_api_key=openai_api_key) documents_faiss_index = FAISS.load_local("knowledge/faiss_index_all_documents", embedding_model, allow_dangerous_deserialization=True) documents_retriever = documents_faiss_index.as_retriever() combined_retriever = EnsembleRetriever( retrievers=[documents_retriever] ) if voice == 'Sarah': interview_prompt = ChatPromptTemplate.from_messages([ ("system", get_interview_prompt_sarah(language, n_of_questions)), ("human", "{input}") ]) else: interview_prompt = ChatPromptTemplate.from_messages([ ("system", get_interview_prompt_aaron(language, n_of_questions)), ("human", "{input}") ]) report_prompt = ChatPromptTemplate.from_messages([ ("system", get_report_prompt(language)), ("human", "Please provide a concise clinical report based on the interview.") ]) interview_chain = create_stuff_documents_chain(llm, interview_prompt) report_chain = create_stuff_documents_chain(llm, report_prompt) interview_retrieval_chain = create_retrieval_chain(combined_retriever, interview_chain) report_retrieval_chain = create_retrieval_chain(combined_retriever, report_chain) return interview_retrieval_chain, report_retrieval_chain, combined_retriever def get_next_response(interview_chain, message, history, question_count): combined_history = "\n".join(history) # Check if the interview should end if question_count >= n_of_questions: return "Thank you for your responses. I will now prepare a report." # Generate the next question result = interview_chain.invoke({ "input": f"Based on the patient's last response: '{message}', and considering the full interview history, ask a specific, detailed question that hasn't been asked before and is relevant to the patient's situation.", "history": combined_history, "question_number": question_count + 1 # Increment question number here }) next_question = result.get("answer", "Could you provide more details on that?") # Update history with the new question and response history.append(f"Q{question_count + 1}: {next_question}") history.append(f"A{question_count + 1}: {message}") return next_question def generate_report(report_chain, history, language): combined_history = "\n".join(history) result = report_chain.invoke({ "input": "Please provide a clinical report based on the interview.", "history": combined_history, "language": language }) return result.get("answer", "Unable to generate report due to insufficient information.") def get_initial_question(interview_chain): result = interview_chain.invoke({ "input": "What should be the first question in a clinical psychology interview?", "history": "", "question_number": 1 }) return result.get("answer", "Could you tell me a little bit about yourself and what brings you here today?")