ruben09's picture
base gradio
5d27c1e
import math
import json
import os
import numpy as np
import gradio as gr
from tensorflow import keras
from huggingface_hub import hf_hub_download
import librosa
# Download the model
model_path = hf_hub_download(repo_id='ruben09/music_genre_classification', filename='music_genre_model.h5')
# Load the model
model = keras.models.load_model(model_path)
def process_audio(audio_file):
map_labels = ["blues", "classical", "country", "disco", "hiphop", "jazz", "metal", "pop", "reggae", "rock"]
SR = 22050
TD = 30
SPT = SR * TD
num_segments = 3
n_fft=2048
hop_length=512
summed_predictions = np.zeros(len(map_labels))
sample_per_segment = int(SPT / num_segments)
num_spectrogram_per_segment = math.ceil(sample_per_segment / hop_length)
signal, sr = librosa.load(audio_file, sr=SR)
for d in range(num_segments):
start = sample_per_segment * d
finish = start + sample_per_segment
spectrogram = librosa.feature.mfcc(y=signal[start:finish], sr=sr, n_mfcc=13, n_fft=n_fft, hop_length=hop_length)
spectrogram_db = spectrogram.T
if len(spectrogram_db) == num_spectrogram_per_segment:
input_data = np.array(spectrogram_db)
input_data = input_data[None,..., np.newaxis]
input_data = np.transpose(input_data, (0, 2, 1, 3))
prediction = model.predict(input_data)
summed_predictions += prediction[0]
averaged_predictions = summed_predictions / num_segments
# Get the final prediction (the class with the highest probability)
final_prediction_idx = np.argmax(averaged_predictions)
final_class_label = map_labels[final_prediction_idx]
final_probability = averaged_predictions[final_prediction_idx]
# Format the result as a dictionary
result = {
"final_prediction": final_class_label,
"confidence": round(float(final_probability), 2),
"all_probabilities": {map_labels[i]: round(float(prob), 2) for i, prob in enumerate(averaged_predictions)}
}
return result
iface = gr.Interface(
fn=process_audio, # The function to process the uploaded audio
inputs=gr.Audio(type="filepath", label="Upload Audio (WAV, MP3, FLAC)"), # Accept audio input
outputs="json", # Return predictions as text
title="Audio Classification", # Title of the interface
description="Upload an audio file (max 30 seconds) to get a genre classification."
)
# Launch the Gradio app
iface.launch()