import math import json import os import numpy as np import gradio as gr from tensorflow import keras from huggingface_hub import hf_hub_download import librosa # Download the model model_path = hf_hub_download(repo_id='ruben09/music_genre_classification', filename='music_genre_model.h5') # Load the model model = keras.models.load_model(model_path) def process_audio(audio_file): map_labels = ["blues", "classical", "country", "disco", "hiphop", "jazz", "metal", "pop", "reggae", "rock"] SR = 22050 TD = 30 SPT = SR * TD num_segments = 3 n_fft=2048 hop_length=512 summed_predictions = np.zeros(len(map_labels)) sample_per_segment = int(SPT / num_segments) num_spectrogram_per_segment = math.ceil(sample_per_segment / hop_length) signal, sr = librosa.load(audio_file, sr=SR) for d in range(num_segments): start = sample_per_segment * d finish = start + sample_per_segment spectrogram = librosa.feature.mfcc(y=signal[start:finish], sr=sr, n_mfcc=13, n_fft=n_fft, hop_length=hop_length) spectrogram_db = spectrogram.T if len(spectrogram_db) == num_spectrogram_per_segment: input_data = np.array(spectrogram_db) input_data = input_data[None,..., np.newaxis] input_data = np.transpose(input_data, (0, 2, 1, 3)) prediction = model.predict(input_data) summed_predictions += prediction[0] averaged_predictions = summed_predictions / num_segments # Get the final prediction (the class with the highest probability) final_prediction_idx = np.argmax(averaged_predictions) final_class_label = map_labels[final_prediction_idx] final_probability = averaged_predictions[final_prediction_idx] # Format the result as a dictionary result = { "final_prediction": final_class_label, "confidence": round(float(final_probability), 2), "all_probabilities": {map_labels[i]: round(float(prob), 2) for i, prob in enumerate(averaged_predictions)} } return result iface = gr.Interface( fn=process_audio, # The function to process the uploaded audio inputs=gr.Audio(type="filepath", label="Upload Audio (WAV, MP3, FLAC)"), # Accept audio input outputs="json", # Return predictions as text title="Audio Classification", # Title of the interface description="Upload an audio file (max 30 seconds) to get a genre classification." ) # Launch the Gradio app iface.launch()